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A technique is developed for systematically deriving a “prolongation structure”—a set of interrelated
potentials and pseudopotentials—for nonlinear partial differential equations in two independent
variables. When this is applied to the Korteweg—de Vries equation, a new infinite set of conserved
quantities is obtained. Known solution techniques are shown to result from the discovery of such a
structure: related partial differential equations for the potential functions, linear “inverse scattering”
equations for auxiliary functions, Bécklund transformations. Generalizations of these techniques will
result from the use of irreducible matrix representations of the prolongation structure.

I. INTRODUCTION

The simplest nonlinear evolution equations having soli-
tary wave solutions (solitons) are known to possess an
infinite set of conservation laws.'~® It is a natural ex-
pectation that the existence of infinitely many conserved
quantities is probably intimately connected with the soli-
ton phenomenon, *~° but the precise relationship is still
unclear. The differential and integral conservation laws
(as distinct from “constants of the motion”) which have
been considered heretofore are constructed from the in-
dependent and dependent variables of the evolution equa-
tion plus successively higher partial derivatives of the
dependent variables, 13

An entirely different set of conservation laws can be
developed from the hierarchy of potentials and pseudo-
potentials connected with the original equation. In a
sense these laws proceed in the opposite direction, de-
pending on successively higher integrals of the original,
or primitive, variables. We use the term “potential” to
denote an integral variable which can be defined by a
quadrature over lower variables. The term “pseudo-
potential” refers to an integral variable which is defined
by an integrable set of first-order differential equations
(more precisely, by a Pfaffian 1-form), the solution to
which cannot be written in terms of a quadrature.

When pseudopotentials are included, this set of con-
servation laws, too, appears to be infinite. It also ap-
pears to be much more closely related to useful solution
techniques for the evolution equations. As we show for
the Korteweg—de Vries (KdV) equation in Sec. VI (and
for the nonlinear Schrodinger equation in a separate
paper®), these conservation laws lead directly to the
soliton solutions, 37° to the Bicklund transformation3:5"7
between solutions, and to the linear equations used in the
inverse scattering approach to the initial value
problem. 2~%.#

The equations which ultimately define these conserva-
tion laws can be expressed in terms of an algebraic Lie
structure which we have called the prolongation siruc-
ture of the equation. Subsets of this structure form fin-
ite Lie algebras, whereas the entire structure appears
to be open-ended, leading to an infinity of higher con-
servation laws. If the structure be closed arbitrarily, it
then becomes a finite Lie algebra (as shown here, Sec.
V, for the KdV equation). The structure constants of the
resulting algebra can be identified with the eigenvalue
parameter of the well known linear operator associated
with the KdV equation. *
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We have not yet had time to investigate these prolong-
ation structures as abstract algebraic entities, nor to
determine their general properties: finiteness, degener-
acy, invariant substructures, etc. We believe, however,
that these general properties must contain important
clues toward answering the fundamental questions about
the existence of solitons and Bicklund transformations,
the applicability of inverse scattering approaches to the
initial value problem, and the possibility of linearization
transformations. From the point of view of the prolong-
ation structure, many of these techniques seem to de-
pend on the existence of a pseudopoteniial for the given
evolution equation. As will be brought out in Sec. IV,
pseudopotentials are connected with the non-Abelian cha-
racter of the prolongation structure, although the rela-
tionship is not entirely clear. We speculate that this
basic property, among others, will be highly significant
for a general analysis of nonlinear evolution equations.

As the best known equation exhibiting all these phe-
nomena, the KdV equation provides an excellent proto-
type upon which to exercise and illustrate any new de-
velopment. Accordingly, the present paper is concerned
with obtaining the prolongation structure of the KdV equa-
tion, and illustrating its relation to the many known tech-
niques for treating this equation. Since the analysis is
performed in the perhaps unfamiliar language of Car-
tan’ s exterior differential forms, %1° Secs. II and I
provide a brief introduction, defining the notation and
setting up the KdV equation in terms of differential
forms. While we do not emphasize the geometrical in-
terpretation of our analysis (which is so well expressed
by the differential form language), even analytically this
notation is unquestionably superior for any treatment of
conservation laws and integrability conditions. Finally,
it is clear that there are many places in the analysis of
this paper where further work needs to be done—some-
times just to settle a minor difficulty, but also to carry
out major extensions.

Il. THE KORTEWEG-DE VRIES EQUATION

Using subscripts to denote partial derivatives, we may
write the KdV equation as

w,tu,, +12uu =0,

(1)

The constant multiplying the nonlinear term can be ad-
justed by scaling #, and the value 12 has been chosen
here for convenience. In order to express this equation
in differential forms, we define the variables

¢
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zsu, p=z,=u_, {(2)

whereupon Eq. (1) may be written as the first-order
equation

u,+p, +12uz=0. (3)

In the five-dimensional space of all these dependent
and independent variables {x, ¢, u, z, p}, we adopt the ba-
sis forms {dx, dt, du, dz, dp}. The set of first-order equa-
tions in Egs. (2) and {3) may then be expressed by the
following set of second-rank differential forms (2-
forms):

o =du/\di - zdx N\ dt,
ay,=dz/\ dt - pdx/N\ dt, (4)
a,=—du/Ndx+dp/Adt+12uzdx Adt,

where d denotes the exterior derivative and A denotes
the exterior product (antisymmetric tensor product).®
Any regular two-dimensional solution manifold in the
five-dimensional space, S,={u(x,#),u, =z2{(x,1), z,

=p(x, 1)}, satisfying Eq. (1) will annul this set of forms,
as may be verified by sectioning the forms into the solu-
tion manifold.'® On S, we will have

du=u_dx+u,di, (5)
and similarly for z and p, so that by virtue of the anti-

symmetry of exterior multiplication, for example,
duN\dt=udx/\dt. Thus, the forms become

a,=(u, -2)dxA\dt=0,
a, ={z, - p)dx N\ dt =0, (6)
a,=(u,+p,+12uz)dx A dt =0,

where the sectioned forms are denoted by a tilda.

In order to assert complete equivalence between the
forms and the differential equations, the set of forms
must be “closed”; i.e., the exterior derivatives of all
the forms must be contained in the ring of forms gener-
ated by the set,

3
dO!.-ZZ nj.‘/\ oy, (7)
i=1

where 7,; is some set of 1-forms. This is equivalent to
ensuring that all integrability conditions of the set of
first-order equations in Eq. (2) and Eq. (3) are satis-
fied. In the present case, we find

da,=-dzN\dxN\di=dx N\ a,, (8)
da, = dx/\as,
da,=—-12dx N\ (za, +ua,).

Thus, the set of forms, Eq. (4), constitutes a closed
ideal of differential forms and Cartan’ s theory'® of such
systems may be applied. In a closed ideal any local sur-
face element which annuls the a, also annuls their ex-
terior derivatives da,. Cartan’s theorem guarantees
that these surface elements will “fit” together to produce
a global 2Z-surface which constitutes a solution manifold
for the forms.

t1l. CONSERVATION LAWS AND POTENTIALS

Conservation laws associated with the KdV equation
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correspond to the existence of exact 2-forms contained
in the ring of the a;. Let us suppose that we can find a
set of functions, f/{x,1,%,2,p), such that the 2-form

B=fia, +fa, +fia, {9)

satisfies dB =0, the condition for exactness. This is the
integrability condition for the existence of a 1-form, say
w, such that

f=dw, (10)

which conversely implies, d8 =0, by the usual identity
for the double exterior derivative of any differential
form, d{dw)=0.°

For example, we consider

B=-a,-12uq,, (11)
and calculate its exterior derivative
df =—da,-12du & a, - 12uda, =0. (12)

Substituting the forms from Eq. (4) and Eq. (8) verifies
that this vanishes identically, as shown. We find then
in accordance with Eq. (10) that 3 can be derived from
the 1-form

w=udx— (p + 6u)dt. (13)

The associated conservation law results from an ap-~
plication of Stokes’ theorem®1°

ﬁulw = f”z dw,

written for any simply-connected iwo-dimensional mani-
fold M, with closed one-dimensional boundary M,, and
the notation implies that w and dw are to be evaluated on
their respective manifolds. If for M, we choose a solu-
tion manifold S, which annuls the o, we will have from
Eq. (11)

(14)

d® =8=0, (15)
giving
ﬁsl&;:ﬁsl[u(x,t)dx_(p+6u2)ds]:o, (16)

where S, is any closed curve in S,. For appropriate
asymptotic boundary conditions (u,z,p =0, |x|— =), S,
can be chosen in the usual way to exhibit the conserved
quantity

wO:f_:u(x, B dx. (170

Returning to Eq. (13), we can of course add to this w
any exact 1-form (say dw, where w is an arbitrary sca-
lar function), and so take instead

w=dw +udx - (p+ 6u?)dt, (18)
still having 8 =dw. It is now convenjent to regard w sim-
ply as a coordinate in an extended six-dimensional space
of variables {x, {,u, 2z, p,w} and to add the 1-form w to
our original set of forms. Since dw is known to be in the
ring of the original set, the new set of forms remains a
closed ideal. We shall refer to this process of inventing
new variables and larger closed ideals (existing in high-
er dimensional spaces), as “prolongation” of the origi-
nal set.!®
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A two-dimensional solution manifold S, in this larger
space will be required to annul all the forms of the pro-
longed ideal. Upon sectioning into S,, where dw =w dx
+w,dt, we have

G=(w, +u)yds + w, —p-6u?)dt=0, (19)

Thus, w(x,t) now appears as a potential function for u,
defined by the first-order equations

u=-w,, (20)

ptBut=w,, (21)
or, equivalently, by the quadrature

w(x, )=~ [u(x, 1dx. (22)

The cross-derivative integrability condition w ,=w
(which requires u to satisfy the KdV equation) simply re-
states the content of Eq. (11) showing dw in the ring of
the original set of forms «; which represent the KdV
equation. Eliminating # and p between Eq. (20) and Eq.
(21), we find that w itself satisfies the equation

w,tw. . —6w:=0, (23)

and so have discovered another nonlinear partial differ-
ential equation closely related to the KdV equation.

IV. MULTIPLE PROLONGATION AND
PSEUDOPOTENTIALS

It may be possible to find several different 1-forms
(Pfaffians) having a structure similar to w; i.e..

w,=dvF+ F¥x, tou, 2z, p)dx + GXx, t,u, z,p)dl, (24)

the exterior derivatives of which are in the ring of the
initial set of forms
3
dw, =2, a,,
i1

(25)

where f*; is some set of scalar functions. This last equa-
tion in fact provides the most convenient method to
search for such Pfaffians. Expanding it, we have

3
AF*N\ dx + dGPN dt =3 fia,,

i=1

(26)

or
p

kR
E(BF dz* A\ dx + g; dz# N\ dt) -2 fra,; =0,

P (27)
where z4 ={x,/,u, z, p} is the set of arguments of F* and
G*. Setting to zero the coefficients of the various inde-
pendent 2-forms in this equation, we obtain a highly
overdetermined set of coupled linear first-order equa-
tions for F* and G*. Each independent solution deter-
mines a Pfaffian form w,, and each such form leads to
an associated conservation law, defines a new potential
function y*, and permits a corresponding prolongation.

We may consider two immediate generalizations of the
process. Firstly, prolongation may be thought of as a
sequential process. In the last section, for example, we
achieved a first prolongation of the set of forms using
the potential w. At the next step we might consider
Pfaffians dependent on all six variables including w.
Thus, we would search for 1-forms as in Eq. (24), but
with F* and G* depending on w as well, and require clo-
sure in the first-prolonged ideal of forms by
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3
dwk=2fk.~01,~+nk/\w, (28)
i=1
where n* is some 1-form. If new Pfaffians result, the
ideal could be further prolonged and then the entire pro-
cess repeated. This generalization is not empty, and in

fact does lead to new and interesting Pfaffians.

But this suggests a further generalization in which we
allow F*(z4,y*) and G*z*,y*) from the start to depend
on all variables, the primitive set z¢ ={x, t,u, z, p}, and
any set of prolongation variables yi. The closure equa-
tion will read

3 n
dw, -2 %0, =221 Aw,; =0, (29)
$=1 =1
where n is the number of prolongation variables to be
included and 7% is some set of 1-forms. This equation
can be treated in exactly the same manner as Eq. (25),
and again results in an overdetermined set of partijal
differential equations for F* and G*, which, however,
are no longer strictly linear, since terms of the form

D (c«-a_F_”_ F‘?—G—k>dx/\dt (30)

. 3yt oy

i

will now occur. This nonlinearity is the price we must
pay to avoid a tedious sequential process in solving for
many of the interesting Pfaffians (those which them-
selves depend on prolongation variables). Fortunately,
the nonlinear terms always have the simple “commuta-
tor” form, as shown by Eq. (30), and in fact lead to an
elegant algebraic structure which is always “solvable”
in principle.

One further consequence of this last generalization
should be noted. In the previously considered sequential
case, the functions F* and G* do not depend on the new-
est prolongation variable y* itself. It is then appropriate
to call the new variable (w, for instance) a “potential.”
Now, however, we may find Pfaffians in which F* and G*
do depend on y*, and we shall refer to this type of pro-
longation variable as a “pseudopotential.” The nonlinear
terms of the closure equations are clearly essential for
these variables, and pseudopotentials cannot be found by
the sequential process using linear equations. As stated
in the Introduction, the existence of pseudopotentials ap-
pears to be the key to Bicklund transformations, inverse
scattering equations, and solution generation techniques.

V. PROLONGATION STRUCTURE OF THE KdV
EQUATION

The following treatment of the KdV equation is re-
stricted in that we do not allow F* and G* to be explicit
functions of the independent variables x and /. The pri-
mary reason for this is simplicity, but it seems plausi-
ble that it is not overly restrictive since the KdV equa-
tion itself has no explicit (x, ) dependence. Nevertheless,
this is one of the loose ends mentioned in the Introduc-
tion, and it remains to be verified that nothing essential
is missed by this simplification.

When Eq. (29) is written out in detail, the following
set of partial differential equations for F*u, z, p, y*) and
GH¥u, z, p, v') is obtained:

Fi=0, F5,=0, F},+G},=0,
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zGh + pGR, ~ 12uzGh, + GPF* i ~ F'G* =0, (31)
where the comma notation for partial derivatives has
been used and the summation convention for repeated
indices. The integrability conditions found by taking
further partial derivatives of these equations with re-
spect to the primitive variables (u, 2, p) can be integrat-
ed to show that F* and G* may be expressed as

FR= 92X+ 2uXE + 3uTXE,

G* = = 2(p + 6u?)X% + 3(2% ~ Bu® — 2up)X? (32)
+ 8X %+ 8uX? + 4uPXE + 42X%,
where the integration functions X% (y%) m=1,...,7) de-

pend only on prolongation variables. All dependence of
F*  G* on the primitive variables is thereby explicitly
determined, and the expressions do not depend on the

number n of prolongation variables assumed.

With this result Eq. (31) splits up intc a set of equa-
tions for the X*(y*). For example, one of these equa-
tions is

Xixk i -XiXE (33)

All the remaining equations have this commutator struc-
ture of the derivative operators and can be concisely ex-
pressed by using the Lie derivative, or Lie product,
notation®

i+ XE=0.

2, i

- - -

g’Xl:[)?m’Xl]:_[Xva]) (34)
Xom
where in components
(X, X, F=XiXt XXt .. (35)
Thus, Eq. (33) can be written
[lexz}: - (36)

Henceforth we shall omit the arrow over vectors. In this
notation the entire set of equations which result from Eq.
(31) for the X* is

[X]‘X3] = {ngX:;]: [leXq}: {Xz» Xs] = 09
[X17X2]:—X7’ [X11X7]:X5y [X27X7]:X6y (37)
[x,, X )+ [X,, X,]=0, (X, X,]+[X, X ]+ X,=0.

A number of further relations can be derived by oper-
ating on these equations with the X, to form new Lie
products and then using the Jacobi identity. For in-
stance, it is quickly found that X, must commute with
all vectors except X,; and also

[, Xl =X, X)X X, =X, (38)
Algebraically, this structure clearly comes close to de-
fining a Lie algebra. In fact, several subsets of these
generators do constitute finite Lie algebras: for exam-
ple, the set {X,, X, X, X}

Defining new generators X, and X, by

[X3,X4}5—X8, [XI‘XS]EXQ (39)

allows us to split up the last two relations between com-
mutators in Eq. {37). Further operations will give new
algebraic relations between the unknown commutators,
and solve for some of them, but do not permit the expli-
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cit determination of all commutators. In fact, the pro-
cess is apparently open-ended; the whole structure does
not appear to close itself off into a unique Lie algebra
with any finite number of generators, although we have
no proof of this either way. An open structure would im-
ply the existence of an infinite number of possible pro-
longation variables and associated conservation laws.
For the KdV equation, such a result is perhaps not sur-
prising. It must be noted though that these conservation
laws will not involve explicit {x, () dependence, nor de-
pendence on derivatives of u higher than p=u__. This is
not the same infinite collection of conservation laws ob-
tained in Ref. 1.

While a detailed investigation of this algebraic pro-
longation structure remains to be carried out, many in-
teresting results can be immediately obtained from it.
One approach is to force closure by arbitrarily imposing
linear dependence among the generators at some level.
Specifically, for instance, if we postulate

~3C.X,, (40)
m=1

where the C, are constants, and demand that the first
eight generators be linearly independent, we find that
the equations require

C,=0 (m=#17,8), C,==Cy=X,

where \ is any constant. When all the equations are con-
sidered, we finally obtain the eight-parameter Lie alge-
bra described by the relations

(X, X,l=-X,, [X X)==X/\, X, X, =X,
X, X, 1=X,, X,)=X,, (X, X=X/,

(X, X ==X/, [x3,xqj ~X, (XX, )= =X X,
(X, X,1=X,, Xy X=X, XX ]=X,,
[,Yz,X4J: (X, x)=X,, Xy=(X, - X,),

(41)
and all other commutators vanish. The element X, is
used simply as an abbreviation, and is not a generator
of the algebra. Note that the generator X, commutes with
all others.

It is not difficult to obtain an eight-dimensional reali-
zation of this algebra. Let basis vectors be defined by

a
bks-é;)_k (k=1,...,8), {42)
where y* is a set of coordinates in the space of prolong-
ation variables. A nondegenerate representation of the
generators then is

if

X, = 51b, + exp(2y,)b, + yabs + Y405 + (¥5> — )b, ),
X, =%[b, +2b,],
Xy=13
X

= bs
2= = by +exp(2y5)by + Ygbs = by
+(3/20)bs + (952 = \)bgl, (43)
Xo == $exp(2y,)b, + yebs + (¥ + 1)),
Xs=by,
X,=45[b,+ 5b. +2y,b,],
H.D. Wahlquist and F.B. Estabrook 4



X, = b,

Using these results in Eq. (32) to write out explicitly
the eight Pfaffian forms

w, =dy* + Frdx + G*dt, (44)

which correspond to the components of these vectors,
we have

w, =dy, +dx -4\ dt,

w, = dv, + exp(2y,) dx — 4 exp(2y;)(u +A) dt,
Wy = dy, + g dx + [22 = 4y (u +2)]dt,
wy=dy,+ddi,

w,=dys+y,dx + (2~ 6y;)dt, (45)

we=dy,+u® dx + (2% - 8u® — 2up) dt,

w,=dy, +udx—(p+6u)dt,

Wy =dyg+ (2u+vZ =\)dx - 4{(w + 1) 2u + 9,> =)
+3p~zy ldt.

Of these, w, and w, are trivial; w, and w, define known
potentials and conservation laws for the KdV equation
which involve only the primitive variables,! and we see
that y.=w, the potential discussed in Sec. III. The poten-
tial y. could have been obtained by the linear sequential
process, whereas w, and w, give potentials which re-
quire discovery of the single pseudopotential y;. As an
example of closure for these Pfaffians, we calculate

dwg=—4(4u +v,2 +VNa, +4y,a, - 20,

- 2{v,dx +[22 = 4u + Wy ]d} N wg, (46)

verifying that w, is closed in the prolonged ideal of
forms, {a;, w,}.

VI. SOLLUTION TECHNIQUES

The prolongation structure can be shown to lead quite
directly to the equations which have been used in a vari-
ety of methods for obtaining analytical solutions to the
KdV equation. It also serves to relate the KdV equation
to 2 number of other nonlinear equations, such as that
satisfied by v,=w, Eq. (23). Additional related equa-
tions derivable from the Pfaffians of Eq. (45) are

v+, —20 2+ B, =0 (v=y,),

Vet Ve — 6¥%v, + 61y, =0 (v=0,). (47)

The second of these is essentially the modified KAV
equation. Miura’ s discovery that this equation is trans-
formable to KdV was one of the earliest results used in
the analytical treatment of solitons, !!

We shall now briefly review the relationship of the
prolongation structure to the known solution methods for
the KdV equation. The most significant Pfaffian of the
set in Eq. (45) is w,, defining the pseudopotential y, for
which we henceforth use the symbol y. On a solution
manifold of the prolonged ideal, we will have from
wy,=0

}'x:‘(2u+y2‘ K)?
V=4[ +2)(2u+y2 =\) + 5p - 2y]. (48)

The first of these is a2 Riccati equation linearizable by
the substitution
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Y=/, (49)

giving

b T (2u ~N)Pp=0, (50)

Analysis of this Schridinger equation has uncovered the
beauty of the solitary wave solutions of the KdV equa-
tion. 2-* Note that the arbitrary parameter x, which ap-
pears in Eq. (50) as an eigenvalue when the usual as-
ymptotic boundary conditions are imposed, first ap-
peared in the prolongation structure as a structure con-
stant of the Lie algebra. This demonstrates the direct
relationship between these eigenvalue “constants of the
motion” and the set of differential conservation laws.

The equations of another method can be derived by

combining w, and w,. From the Plaffian form w, we have
V==Y, (51)

Considering Eq. (49) and the Pfaffian w,, this suggests
making the logarithmic variable substitution

Ys== Iny, (52)
together with ¢ =3, so that Eq. (49) becomes
y=¢/d. (53)

If we define a new pair of Pfaffians in the ring of w; and
wgy by

Wy = Pwy = dw,

W= — YWy, (54)
and express them in the variables ¢ and y, we find
we=d¢ + (2u =)y dx

+{22¢ - (4@ +2)(2u =2) + 2ply} dt, (55)

wio=dy - dx =229 —4(u+1)p] dt.

These are linear in ¢ and ¥ and constitute the Pfaffian
differential form representation of the first-order in-
verse scattering equations. Both Egs. (50) and (55) have
been used to develop linear techniques for solving the
initial value problem for the KdV equation. >3

Another technique for generating analytic solutions
can be deduced from the prolongation structure. Suppose
that one particular solution of the prolonged ideal {o o
w,} is known. We may inquire whether another solution,
say #’, of the KAV equation can be written as an alge-
braic function of all the variables in the space of the
prolonged ideal; i.e., u’=u'(u, z,p, y'). The answer can
be found by substituting this ansatz into the set of forms

o =du' Ndt-z"de/N\dl,
a,'=dz’A di -p’dx A\ dt,
o= —dw A de+dp'N dt+ 120z dx N\ di, (56)

and, as usual, demanding that these be in the ring of the
prolonged ideal.

After a tedious but straightforward calculation, the re-
sult is that

uw=-u-y7+x (57)
is always another solution.
Since u =0 satisfies KdV, u,"= —-y2+x must also be a
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solution. From Eq. (48) for this case

¥, == =2),

Y, =@ =)= -y, (58)
the regular integral of these being

y=x"?tanh[x!/2(x - x, = 4r1)]. (59)

The result for «,’ is the regular 1-soliton solution.

An equation like Eq. (57) is clearly equivalent in gen-
eral to a Backlund transformation. Simply solving for vy
and substituting into Eq. (48) will produce the usual form
of the Bicklund transformation. In fact, for the KdVv
equation, !? it is simpler to use the potential function w.
To see this, we use the Pfaffian o, to get

==y, ==-w, (60)
so that Eq. (57) can be written
—w/ =w, ~y +r=w, +y, —2w, (61)

where we have used Eq. (48) to write the second equal-
ity. Integrating and absorbing the integration constant
in the potentials, we have

y=w—1’, (62)
so that Eq. (57) can finally be written as
—w, =w =u +u=x - (W —w), (63)

With x = k®, this is precisely the space part of the Bick-
lund transformation presented in Ref. 12. By using Eq.
(57) and Eq. (62), the y, equation in Eq. (48) can also
be rewritten to give

(64)

which expresses the other half of the Bicklund trans-
formation of Ref. 12 in a symmetric form.

w, +w, =4 +uu+u?) +2w -w)(z’ -2),

An extension of the solution generating technique lead-
ing to Eq. (57) can be used to derive directly the hier-
archy of solutions which are known to result from re-
cursive application of the Bicklund transformation. So
far we have treated the Pfaffian w, as a single 1-form,
but we can also consider it to represent a 1-parameter
infinity of independent Pfaffians, parametrized by x.
That is, for any given solution {u, z, p} of the KdV equa-
tion, w, defines a 1-parameter family of pseudopoten-
tials, y(x,¢,)), which are linearly independent functions.
This suggests that we attempt to find more general solu-
tions than Eq. (57) by entering the forms of Eq. (56)
with the ansaiz

= ”I(Hy y()\l)y y()\z))’

for example. Another tedious calculation (we certainly
suspect there must be a neater way to obtain these re-
sults) shows that

(Az -M)[yz(hz) =X "yz()\l) +>\1]
(L) -y ()P

is indeed always another solution. Since we know from
Eq. (57) that

(65)

' =u-+ (66)

(67)

are solutions, we can eliminate the y’s from Eq. (66) to
obtain the superposition principle, or recursion relation,

1, ===y +r,, ===, +x,
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w =+ 0, =2 )0y =)/ L0, =, =) 7% = (n) =2y =) 2],

' (68)
which can then be used to generate the Bicklund hierar -
chy. Again, one has much simpler expressions if this
analysis is carried out for the potential w as in Ref, 12,
and we shall not pursue it further here,

VIl. CONCLUSION

The formulation of nonlinear evolution equations in
terms of ideals of differential forms leads in a very
clear fashion to the derivation of potential functions and
conservation theorems. The natural and important gen-
eralization to pseudopotential functions results in
discovery of new conservation theorems; and even more
importantly, pseudopotentials appear to be the unifying
concept for understanding the relations between diverse
known solution techniques (Bicklund transformation, as-
sociated inverse scattering problems). The discussion
here has been made concrete by reference throughout to
the treatment of the Korteweg—de Vries equation.,

The systematic search for the pseudopotentials of a
closed set of forms leads to consideration of an associ-
ated overdetermined set of first-order nonlinear partial
differential equations which we denote a prolongation
structure, The prolongation structure is integrable pre-
cisely because it has the form of (a subset of) the com~
mutation relations of a Lie group. We have not in the
present paper been able to exploit some of the deeper
known results for Lie groups systematically, but it
seems clear that extremely powerful mathematical tech~
niques are now at hand. For example, the search for
linear, or matrix, representations of the group (or
structure) can be undertaken in a completely algorith-
mic way. This results in representations of the vector
generators of the form X, =a,,1/38/2y*, where the a,,,
are constants; and the pseudopotentials y* thus found
will enter the prolongalion formms w linearly. The vari-
ables ¢ and ¢ and forms w, and w,, of Eq. (55) thus are
seen to belong to a two-dimensional matrix representa-
tion of the prolongation structure for the KdV equation,
Eq. (37).

The inverse scattering technigue has been shown to
provide a linear method of solving the initial value prob-
lem for many nonlinear evolution equations. One of the
primary obstacles to extending the method is the discov-
ery of the appropriate linear equations or operators.
The search for linear representations of the prolongation
structure would appear to provide a straightforward ap-
proach to this problem which does not require ad hoc
restrictions. It also suggests generalizations; for in-
stance, an intriguing possible generalization of the
known method of inverse scattering may result from
higher ~dimensional matrix representations. At present
we can only speculate that for linear representations of
sufficiently high dimension, the pseudopotentials gener-
ated will provide some ultimate linearization of the ori-
ginal problem similar to that achieved for KdV. A final
comment is to remark on the close connection of Lie
groups and generalized Fourier analysis; the natural ex-
pression of the superposition rules intuitively felt to
underlie the soliton phenomenon may well be found in the
use of the invariant functions dual to the vector genera-
tors of the prolongation structure.
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The structure of singularities is discussed for some exact solutions of Einstein equations for
irrotational perfect fluids with equation of state pressure equal to energy density, p =w. It is found
that all singularities studied are velocity-dominated of the semi-Kasner class. 1t is also found that
data on the singularity are not enough to generate space-time for all times.

1. INTRODUCTION

The concept of a velocity-dominated singularity in
irrotational hydrodynamics models® is used to study the
singularities of three nonhomogeneous exact solutions
of Einstein equations for irrotational perfect fluids with
pressure p equal to rest energy w.

The solutions studied have singularities with more
complicated structure than other known exact solutions.
The P symbols defined by Liang' depend on one or two
arbitrary functions of one variable.

The first solution studied (Sec. 2) is the general solu~
tion for plane symmetric fluids.? It is found that the
solution has a velocity-dominated singularity of the
semi-Kasner class. In Secs. 3 and 4 the singularities
of two special classes of cylindrical symmetric solu-
tions** are studied. It is found that the singularities are
of the semi-Kasner class, too. In Sec. 5 some remarks
on the spherical case are made.

The fact that the solutions have arbitrary functions
that are completely wiped out near the “big bang” is
indicated.

2. THE PLANE SYMMETRIC SINGULARITY

In this section we study the structure of the singulari-
ties of irrotational plane symmetric perfect fluids with
p = w equation of state. The general solution of Einstein
equations for these fluids is known.? The result is sum-
marized in the following set of formulas: Solve the lin-
ear equation

0,, =0, 170, (1)
to get

ds? =171 2%(q1* —dz?) ~ l(dx* +dv®) (2a)
from

Q= [ 1[(o? +0ddl +20,0,dz] (2b)
and

p=w=35"o?~02)e ™ (3)

any solution of (1) generates the solution (2) of Einstein
equations, with pressure given by (3).

Comoving coordinates are g, Z, x, and y. ¢ is the
comoving time, Z is a comoving spatial coordinate
defined by
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dZ =Ho,dl +0,dz). (4)
In these coordinates the metric (2) reads
ds?=1"1%%0% — 0¥ (do* = 172d Z%) - 1{dx" +dy°). (5)
We shall study the behavior of the general solution
near the singularity /=0.

The formal Fourier transform of equation (1), in the
variable z, leads to the solution

olt, 2) == ‘f: F(z +tcosu)du + I{;;xE(z +{ coshi)du. (6)

1t is easily checked that (6) solves (1) for arbitrary
functions F and E whenever the integrals exist and dif-
ferentiation is allowed under the integral sign.

Unfortunately, there are some solutions that cannot
be expressed as (6). An example is o=:1n/. It is likely
that all solutions can be obtained from (6} by some
limiting procedure. An example is

Inf == l)igml(/, z)
where

o, z)=7" fow 1on/2du - f: exp[—r(z +/ coshu)]du.

The behavior of ¢ near the singularity can be found

from (6) noting that®

_lirgllot:—E(z), (1)

i-
and therefore

~~FE(z)In/ as {—0 (8)

The arbitrary F(z)is completely dominated by E(z)
near / =0. F(z) plays a role at /=0 only if E(z)=0. If
that happens the singularity is no longer spacelike. An
example can be found in Ref. (6). Now the complete
solution near !/ =0 in comoving coordinates can be ob-
tained. Equations (8) and (4) give

dZ = ~E(z)dz. (9)

Thus z is also a comoving coordinate near [ =0. Equa-

tions (8) and (2.b) give us
Q= - E(z)o. (10)

From (10), (9), and (3) the metric and the pressure near

the singularity are

ds*=E2exp[— (E +3E)o|do* - exp[~(E —=3E")o}dz"
—exp(~0/E)(dx* +dv?), (11)

Copyright © 1975 American Institute of Physics 8



p=w=~3E*exp[(E +3E)0]. (12)

The metric (11) shows that the singularity is velocity
dominated, the Psymbol given by

2
P:(ZE -1, 2 2 )

: 1
2E*+3 2E*+3 ' 2E?+3 (13)

as defined by Liang.' This class of singularities where
TP,=1and TP?#1 are called semi-Kasner
singularities.

3.CYLINDRICAL SYMMETRIC SINGULARITIES. |

In this section we study the singularities of a class of
irrotational cylindrical symmetric perfect fluids with
p = w equation of state. A general solution of Einstein
equation for fluids in this condition is unknown, but
there are two particular classes of known solutions. **
In this section we shall study the first class® and in the
next section the second.? The main relations for the
first class are

0, +pto, =0, +1 0o, (14)
ds® =121 = p*)3 /e di? —~ dp?) - Hp2d6® +dz?), (15a)

Q :jtz ’itpg {[t(o? +0}) =2p0,0,])dp

+[2t0,0, - plo? +0))]di} +A, (15b)

p=w==2t2(2 = p?) 2o ~ 0?) (16)

where o, a solution of (14), generates the solution (15)
with pressure (16). A is an arbitrary constant. Comov-
ing coordinates are o, R, f, and z. ¢ is the comoving
time, R is the comoving radial coordinate defined by

dR =tplo,dl +0,dp). (17)
In comoving coordinates the metric (15) is given by

ds® =122 = p*)3/ (0% — 02)! e®[do® ~ (pt) 2 dR?)

~H(p?d8* +dz?). (18)
The solution to (14) is now
olp,t) = fo"fo"F(t cosu + p cosv) dudv +f0"a fo”
X G(t coshu + p coshv)dudv. (19)

[The remarks made on (6) are also valid for (19)]

Space —time (15) has two singularities, t=0 and p=0,
the first is a spacelike singularity in the plus sign solu-
tion and the second is spacelike too in the minus sign
solution,

The plus sign solution: Confronting (6) and (19), it
follows that

}i‘x(;ntc, == f: G(p coshv) dnv = — E(p). (20)
Thus
~~E(p)Inf{ as {—0, (21)
Equation (17) near the singularity reads
dR =~ ~ pE(p)dp. (22)

Therefore p is comoving too near £ =0,
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Now the metric and the pressure in comoving coor-
dinates can be found as above. They are

ds?=~p*'2E % exp[~(E +3E V)0 ]do’ - p*/2exp[- (E - E Vo]

xdp® —exp(-0/E){(p?d6® +dz?), (23)

(29)

In this solution A has been chosen to make the metric
and the pressure real. The metric (23) tells us that the
singularity is velocity-dominated of the same class as
the former solution with the same P symbol.

P=w=3E%p"/ 2exp[(E +1E)0].

The minus sign solution: Now p is a temporal coor-
dinate and ¢ a radial coordinate. Near the spacelike
singularity p=0 we have

o=-E(t)Inp, (25)

dR = -tE(t)dt, (26)

£ =~ E? Inp(A =0 without lost of generality®). 27
The metric and the pressure near p=0 are

ds®=~tE2exp[—(E +2E)o]|do® —exp[ - Eo|dt*

—texp(~20/E)d6* —tdz?, (28)

p=w=5E%"'exp{(E +2E)o]. (29)

The P symbol in this case is

Hence we have that the singularity is velocity~-dominated
of the semi-Kasner class too.

4. CYLINDRICAL SYMMETRIC SINGULARITIES. ll

The other class of known solutions is given by

04 =0, +p 0, Xy =ty +p 70, (31)
ds®=zexp[2(v - A)](dt? — dp?) — p? exp(—27) d 67
-exp(2x)dz?, (32a)
v= [ plo? +02 +22 +23)dp +2(0,0, +A,0,)dt],  (32b)
p=w==(0f -0 exp[-2(v -1)]. (33)

Where a pair of solutions of (31) generates the solutions
(32) with pressure (33). Comoving coordinates are o, R
8, and z. R is given by

3

(34)
Near the singularity p=0 we have from (6) and (7) that

dR =plo,dp +0,dt).

o=~—E(t)lnp. A= —E(t)lnp. (35)
Therefore,

dR = - E(¢)dt, (36)

v=(E® +€*)1Inp. (37)

To keep the pressure positive we must choose the minus
sign in (32). Thus p=0 is a spacelike singularity. The
metric and the pressure in comoving coordinates are

P. Letelier and R. Tabensky 9



ds*=~E*exp[-2(E* +€® + ¢ +1)o/E]dc®
—exp[—2(E% + € +¢€)o/E]dt*
—exp[~2(e +1)o/E]|d6* - exp(2e0/E)d2?, (38)
p=w=E%exp[2(E% +€® +e +1)0/E]. (39)

And the P symbol is

P E*+et+e e+1 . - ]
T|EF+E +e+1 7 EP+e+e+1’ E2+ef +e+1]

- (40)
Hence the singularity is of the semi-Kasner class again.

5. SPHERICAL SYMMETRIC SINGULARITIES

In this section we make only some remarks on the
spherical case. The general solution of Einstein equa-
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tions for irrotational perfect spherical symmetric fluid
with p = w equation of state is unknown. However, two
classes of solutions are known, ® each class depending
only on one parameter. Depending on the value of the
parameter we can have solutions without a big bang,
with “naked singularities” or velocity-dominated semi-
Kasner singularities.
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Analytic vector harmonic expansions on SU (2) and S?
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Irreducible vector fields (vector harmonics) are introduced on S U(2). It is shown that an arbitrary
vector field can be expanded in terms of these vector harmonics, and tight convergence conditions
are derived for analytic vector fields. These expansions are related to well-known vector harmonic
expansions on the two-sphere. The generalization to arbitrary tensor fields is discussed. A connection
between the Lie algebra of vector fields on S U(2) and the Virasoro algebra is noted.

1. INTRODUCTION

A topic of considerable interest in mathematical
physics is the expansion of functions on groups and
homogeneous spaces in terms of a complete set of basis
functions on the manifold. These basis functions nor-
mally arise as basis vectors for irreducible representa-
tions of the group.' In general, these expansions are
useful from a practical point of view only if the con-
vergence of the expansion is very rapid, i.e., only if
a few terms in the series need be retained. Rapid con-
vergence is not a common property for arbitrary class-
es of functions. However, if the family of functions is
confined to the analytic class, then, as is the case for
functions of a real variable, it may be possible to show
that rapid convergence prevails.

This program has been carried out for SU(2),% §*,3
and SU(3),* and the theorems obtained can be generalized
to arbitrary compact semisimple Lie groups and their
homogeneous spaces. These theorems are quite strong
and greatly restrict the possible behavior of the expan-
sion coefficients. These theorems also indicate the
kinds of difficulties that may be encountered if one at-
tempts to expand a nonanalytic function. The poor con-
vergence of certain Dalitz plot expansions,5 e.g., may
be understood in terms of singularities on the phase-
space manifold.®

A related tool has been the expansion of vector-valued
functions in terms of vector harmonics.” Most important
here is the multipole expansion of the radiation field,®
the rapid convergence in this case being the reason for
its ubiquitous nature. Since in the radiation zone, it is
primarily the angular distribution which is being ex-
panded, we have in a natural way the expansion of a
vector field defined over the sphere S2. In a similar
fashion, the partial wave expansions of helicity ampli-
tudes® are tensor expansions on SU(2).

It is the purpose of this paper to put the convergence
properties of such expansions on a firm foundation. The
emphasis in this paper is on the strong theorems en-
countered when the fields are analytic. In order to carry
out this program it is convenient to use the abstract lan-
guage of manifold theory. This serves two purposes.
First, it makes certain that all definitions and theorems
are natural, i.e., independent of the coordinate patch
chosen, a condition that is essential. One need only
refer to the example cited in I where it is shown that the
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function siné is not analytic on the two~sphere $2,
whereas cos#@ is, a fact that would not have been ascer-
tained by remaining in the (8, ¢) coordinate patch. The
second reason for working with the abstract language is
that the generalization to other Lie groups and homo-
geneous sSpaces is most apparent in this language. Thus,
although the answers to questions may vary as we
change the category of group (simply connected to non-
simply connected; compact to noncompact; etc.), the
questions which we wish to ask remain relatively clear.

For two reasons, we will give (whenever possible)
the description of the objects discussed in the conven-
tional coordinate patches [i.e., the Euler angles on
SU(2) and polar coordinates on 52] as well as the de-
scription of the objects in the language of manifolds.
First, for a large number of physical applications it is
ultimately necessary to choose some coordinates (e.g.,
the angular spectrum of the radiation field). Second,
this article will have served no useful purpose if it does
not make contact with series most commonly used in
physical applications. This necessitates the display of
the objects in their customary notational form.

Vector fields and their general properties are dis-
cussed in Sec. 2A. Irreducible vector fields, analytic
continuation, and an invariant inner product are intro-
duced in the remainder of Sec. 2. Sections 3 and 4 dis-
cuss the convergence properties of harmonic expansions
of vector fields on SU(2). Section 5 gives a construction
which relates the customary vector spherical harmon-
ics” to the above irreducible vector fields. Section 6 in-
dicates the same type of results for arbitrary tensor
fields. Finally, in Sec. 7, the full Lie algebra of vector
fields on SU(2) is discussed in connection with the
Virasoro' algebra.

2. VECTOR FIELDS ON SU(2)
A. Background

In order to avoid repetition, we will refer the reader
to I for background material on real and complex analyt-
ic manifolds. The notation used here will conform to
that in I, and the reader will be referred to specific
formulas given there. The geometric material dis-
cussed here can be found in any modern text on differ-
ential geometry (e.g., Kobayashi and Nomizu!!) or to
a recent expository article in the American Mathemati-
cal Monthly.'? We will mainly follow Helgason'® because

Copyright © 1975 American Institute of Physics 1



of the close relation between the topics discussed there
and the theory of Lie groups. To avoid confusion and
repetition, we will use the word “analytic” to mean real
analytic, and “holomorphic” to mean complex analytic
in the sense discussed in I.

The manifold under discussion will be the group G
of 2X 2 unitary unimodular matrices, SU(2). Endowed
with the unique analytic structure in which the group
action is analytic, SU(2) is analytically diffeomorphic
to the sphere in four dimensions S® endowed with the
usual analytic structure [Eqs. (2.8)—(2.10) of 1]. Let
CF(G) be the family of complex~valued analytic functions
on G. It is the space of real-valued analytic functions on
G, which is natural in the sense that it is uniquely de-
termined by the analytic structure on G, and in turn
uniquely determines the analytic structure on G.** We
may consider complexifying these real functions to
pairs of real functions f; +if, without complication. It is
necessary to use this complex space for decomposing
the left regular representation (defined below) into
unitary irreducible representations. The introduction
of unitary representations immediately necessitates
the use of complex vector spaces. That unitary repre-
sentations are used is related to the well-known fact
that finite-dimensional representations of compact Lie
groups are completely reducible over the complex field
to a direct sum of unitary irreducible representations.
This does not hold over the real field. We give first the
abstract definition of a vector field on G, as this is the
form we shall use.

Definition 2.1: A (complex) vector field X on G is a
derivation on CF(G), i.e., X is a map X : CF(G)— CF(G)
such that

X(af +Bg)=aX(N)+8X(g) (2.1)

and

X(fg)=rx(g)+X(N g, (2.2)

where a and 8 are complex and f, g< CF(G) (Helgason, **
p. 9).

This definition merely formalizes our ideas about
first order differential operators. Indeed, in a coordi-
nate patch y=(y,,...,¥,),” X has the form

xtn=(2x &) . 2.3)

i ayi

where the Xi’s are complex functions on the patch
called the components of the (covariant) vector field,
with respect to the patch y=(y,,...,v,). Note also that
we are allowing complex vector fields X, +iX,, where
X, , are real, because of our use of the complex func-
tion space in the definition. It, of course, easily fol-
lows that if X is a vector field, then so is fX, for all
fe CF(G).

Let us relate the above definition to the idea of the
tangent space at a point # of G. Let X, denote the linear
mapping of the space of analytic functions at a point
uec G, defined by

X, f— X)),

From the form of (2.3), it is clear that this set of ob-

(2.4)
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jects is spanned by the linearly independent operators
&, given by
~ af
é :f—
Gf gy
where Y° is the image of u. Denote the collection of all

X, by CT,(G). From (2.5) we see that a general X, has
the form

Xu:Z Xt (u) é“
i

v (2.5)

(2.6)

which manifestly displays C7T, as a finite~-dimensional
vector space of dimension equal to the dimension of the
manifold. The X!(x) are the components of X, with re-
spect to the basis &,. Intuitively, then, we may think

of a vector field as a vector whose components vary as
we change the point #. The only way we will get into
trouble in this thinking is if we fail to remember that
(2.5) and (2.86) are only local statements, since the
patch does not in general cover all of G.

Recall that a function f is said to be of class C" if
derivatives of all orders up to and including » exist and
are continuous. We now define this concept for vector
fields.

Definition 2.2: A vector field X on G is said to be C”
at a point we G if Xf is of class C" at u, for all fc CF(G).
X is said to be of class C" if it is C" at all points u < G.
The concepts of X being analytic at a point and analytic
are similarly defined. From Eq. (2.3} it should be
clear that the C" definitions are equivalent to the fact
that the X! are of class C” in the usual Euclidean sense.
Also, if X is of class Cr, then so is (fX) for all
fe CF(G). Because we will be working primarily with
analytic vector fields, we shall use CT(G) to denote the
set of all analytic vector fields on G.

CT(G) has more structure. Clearly CT(G) is a vector
space over the complex numbers, with the obvious
definition

{aX + BY) f=a (X + B(YN,

where a, 3 are complex and X, Y & CT(G). In a similar
faghion CT(G) is a module'® over the ring CF(G). In an
intuitive fashion, we also expect the commutator of two
first order differential operators to be a first order
differential operator. A simple application of definition
(2.1) shows this to be true, sothat we define a bracket
operation [, |

X, v]=XY-7vX (2.8)

for all X,Y e CT(G). It is easily checked that the usual
Jacobi identity is satisfied, so that CT(G) endowed with
the bracket operation of Eq. (2.8) becomes an infinite-
dimensional Lie algebra.

2.7

For a Lie group, a preferred position is accorded to
the Lie subalgebra of CT(G) which is invariant under the
left group action. This subalgebra is normally called
the Lie algebra, 4, of the Lie group.

To see how /4 arises, consider the process of left
translation, Lu1 :G— G, by an element #, given by
L (2.9)

. —_— gl
wy U W =
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L,‘l is an analytic diffeomorphism of G onto itself for
each &, ¢ G, It induces in a natural way a mapping
U, : CF(G)—~ CF(G) which is defined by

Uu1 Df— i

Fr(uu) =fu) forallue G (2.10)
or

Fha() =Fli ) (2.11)
or

ff=fe Luil, (2.12)

where ° denotes composition of mappings. The set of
operators U, clearly acts in a linear fashion on CF(G),
and in fact obeys the group rule

v v =U

uy up ug

(2.13)

so that it in fact forms a representation of G called the
left regular representation on G.

In a similar fashion L, induces in a natural way a
mapping dL, of CT(G) onto itself called the differential
of L, . We defme it by the rule (Helgason, p. 22}
dL X — X"  where

(X" ) (e ) = (XA) () (2.14)
for all fe CF(G) and u& G or in one of the following
forms:

XU = (xpn,

X“f= (Xf“Il)"l_
The last equation is the most convenient form, From
its definition (2.14), it follows that dL, acts linearly
on CT(G), while a repeated application of (2.16) shows

that the family of maps dL, where uc G (which we de-
note dL,) obeys the group rule

dL, °dL, =dL,,

(2.15)
(2.16)

(2.17)

dL is a representation of G which we will call the left
diffevential vepresentation of G. Because the maps L,
are analytic, dL, preserves the analytic character of
X. dL, also preserves the structure of CT(G) as a
module over CF(G) and as a Lie algebra (Helgason,

p. 24), i.e

() =fax" (2.18)

and

[x“, v4]=[X,v]*" (2.19)

B. Irreducible vector field on SU(2)

Because we have a representation dL, of G on the
linear space CT(G), we may ask if there are any finite-
dimensional subspaces of CT(G) in which dL, acts ir-
reducibly. In particular, are there any one-dimensional
subspaces which are invariant? We therefore seek
vector fields X such that

X¥=X forall ueG. (2.20)

That this set is nonempty is seen by the following
construction. Let X, be a vector in the tangent space
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at the identity CT,(G). Define the vector field X by left
translation on X, i.e.,

XA =[x, " (e). (2.21)

With this definition, it is evident that X is in fact left
invariant. Further, X is an analytic vector field
(Helgason, p. 89). Also, because left translation pre-
serves the vector space structure and the algebraic
structure, all X so defined form a finite-dimensional
subspace of CT(G) which is closed under [, ]. In fact,
these are all of the invariant vector fields.

The unique association of an element in CTe(G) with
a left invariant vector field permits a bracket operation
to be defined on CT,(G) in the obvious manner. Under
this operation CT,{G) becomes a Lie algebra normally
called the Lie algebra of the group 4. It is apparent
that the structure of G uniquely determines 4 and the
invariant vector fields. The converse is only true
locally.

Let us make contact with the customary physical
notation. Let y(¢) be any path through the identity. This
defines an element of CT,(G) by the rule

= 2 L O

so that we may speak of y(t) having tangent vector X,.
For matrix groups, the functions we consider are
naturally regarded as functions of a matrix, so that
CT,(G) may naturally be identified with the matrices
obtained by the rule (Helgason, p. 100)

(2.22)

%{u(”}ho where u(t) c G, (2.23)
where u(¢) is a path in the matrix group G. With this
identification, the brakcet operation on CT,(G) becomes
the ordinary matrix commutator. Because we are work-
ing with the matrix group SU(2), we will make free use
of this equivalence.

For practical applications, it is convenient to choose
a basis for /4. We choose the basis set 3 0,, where the
0,’s are the standard Pauli matrices [I, Eq. (2.3)].
With this choice, the structure constants for the Lie
algebra are pure imaginary. The corresponding in-
variant vector fields (denoted yi) are defined by the rule

(7,960 == 0) 22{ flwexp(ing,/ D}, . (2.24)

In terms of the FBuler angle parameterization of SU(2)

[1, Eq. (2.25)], theOQ S are given by

§i=i ( :?nsg) azo siny 58—9 + cosy cotd %) (2.252)
a=i (i:;d; 5% + cosy a% —sindcotf ﬁ) (2.25b)
Ja=t a—?b- (2.25¢)

The §,’s are a basis for the invariant vector fields on
SU(2). Each ; Spans a one-dimensional vector space
which is invariant under left translation, being the car-
rier space for an identity representation of SU(2).

Other irreducible subspaces of CT(G) are easy to
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find. Let D/ _,(«) be the matrix elements of the irre-
ducible representations of SU(2) [I, Eq. (3.8)]. If m’ is
fixed between — 4 and j. then the set of functions
{Dj ..—j=m<j}isa basis for a (2j +1)-dimensional
unitary irreducible representation of SU(2) under left
translation, i.e.,

(D} 1] =D}, . [ui*]

mm’[ Uy
::L,? DJ ;) D1, .[ul. (2.26)
By using Eq. (2.18) and the invariance of g,, it is clear
how to define irreducible vector fields. Define %;ﬂ by
the rule

Lo=DJL Yt (2.27)

If m’ and i are fixed then the set of objects {y"{; ,
~J<m<J} is a basis for a (2J +1)-dimensional irre-
ducible representation of SU(2) under left translation.
Each representation occurs 3+ (2J +1) times in this con-
struction (the general formula is N+M, where N is the
dimension of the group, and M is the dimension of the
representation).

The objects ¢ %, are the irreducible vector fields on
SU(2) or, in customary language, vector havmonics on
SU(2). EachyJ}n, is analytic on SU(2) because both y'
and D7, are (I, Sec. 3B). It will be shown in Sec. 4
that this set of objects provides a canonical decomposi-
tion of the left differential representation dL, into irre-
ducible subspaces, i.e., that any analytic vector field
on SU(2) can be written as a convergent series of vector

harmonics.

C. Holomorphic vector fields on SL(2,C/

As discussed in I, SL(2,C) is a holomorphi¢c manifold
which may be viewed as the complexification of SU(2).
In particular, each analytic function on SU(2) has a
unique extension to a holomorphic function on an open
subset of SL(2, C) containining SU(2).

Holomorphic vector fields on open subsets are defined
in the obvious fashion [see def. (2.2)]. Because each
real analytic function has a unique extension, we can
locally extend a real analytic vector field on SU(2) to a
holomorphic vector field on SL(2, C).

Theorem 1: Bach of the irreducible vector fields
Yzme 15 an entire holomorphic vector field on SL(2,C).

Proof: Because we have shown in I that the functions
D" . are entire holomorphic functions on SL(2,C),
sufflces to prove the theorem for / only. By referrmﬂ
to the definition given in Eq. (2. 94) it is clear that the
extension of ¢/, is given by

{f aexplire,/2)]}

A=0

(s f)(")—'l (2.28)
for all g= SL(2,C). By choosing any holomorphic patch
Z ={z,} around g, g, takes the form

Z:(—Z dZ ___a_.

2.29
ar i, 975 ( )

But the group operation is holomorphic in A, so z; is
holomorphic in x, and hence its derivative. This proves

the theorem for l/i.
I
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D. The invariant inner product on CT{G)

In order to exhibit the vector harmonics as an ortho-
gonal basis of CT(G), it is necessary to convert CT(G)
into an inner product space. We know that when we
consider only real vector fields, the introduction of an
inner product [as a map from RT(G)XRT(G) - RF(G)] is
equivalent to giving a (Riemannian) metric tensor field
on G. There is a unique bi-invariant Riemannian metric
on a compact semisimple Lie group (which is a negative
multiple of the Killing form) (Helgason, p. 191). Inte-
grating the resulting inner product over G gives an in-
variant inner product on RT(G) [i.e., RT(G)XRT(G)

— R]. We give below the complex analog of this
construction,

Recall the definition of the adjoint representation Ad,
of a real Lie algebra 4. With an element X <,4, we as-
sociate the matrix AdX acting in the linear space #
which is defined by

Adx(Y) =[x, Y]. (2.30)

The Killing form is a symmetric bilinear form B(X,Y)
on 4 defined by

B(X,Y)=Tr{AdX-AdY}. (2.31)

Because the tangent space at any point of G is isomor-
phic (as a vector space and a Lie algebra) to 4, this
form may be pointwise defined for any pair of vector
fields on G. The negative of this yields a Riemannian
structure g on G, which is given by

2, V)) = — $Tr{AdX(u) AQY (2)} (2.32)
for all X,Y e RT(G) and we G. The factor of } is for
later convenience.

In order to handle complex vector fields, we make a
simple extension of g given by

a(X,, X)) =3 Tr{(AdX,)* () AdX, ()}, (2.33)

where * denotes the Hermitian conjugate matrix. (Note
that the transposition disposes of the minus sign.) In-
tegrating (2.33) puts an inner product {, ) on CT(G).
Thus,

(X,¥)=1% f Tr{[AdX () F[AdY () ]} dQ2()
for all X,Ye CT(G),

(2.34)

where d2(x) is the bi-invariant measure on G (I, Sec.
2C). One readily verifies that { , ) obeys all the prop-
erties for a proper inner product.

An elementary calculation shows that

(Yir ) =04, (2.35)
while an application of the rule

Ad(fl) X)) = fl) AdX () (2.36)
together with the orthogonality of the DY functions
(I, Eq. (5.2)] gives

(Gt Yot ) = 2T +1)78 170010 nD e (2.37)

3. INFINITE SERIES OF VECTOR HARMONICS

In this section we consider the convergence proper-
ties of series of the form
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m J J
X@=-5D 0 D @il , (6.1
{sl g =0 ma=J m'=~J
which, of course, may be rewritten
3
X(g) =2 X*(w) §* (), (3.2)
=1
where
o0 J J
Xi= 20 22 2 ali.Dl .(u). (3.3)
J=0 m==d m'==J

We must first define in the obvious manner the mean-
ing of convergence of a sequence of vector fields.

Definition 3.1: A sequence of vector fields {X,} is
said to converge at a point # € G if the sequence {(an)}
converges at u for all f& CF(u).

Other convergence concepts are similarly defined,

If we now consider the convergence of partial sums
formed from (3.1), it is clear from (3.2)—(3.3) that
the factor (yif) is common to each partial sum, so that
we are in fact really considering the convergence of
partial sums for X (1) defined in Eq. (3.3). But the con-
vergence properties of such series are already known
from I, so that the convergence of series of type (3.1)
is an immediate consequence of I.

We summarize this succinctly.

Definition 3.2 For a series of the form (3.1), the
exponent of convergence a, is defined by the formula

a,=~log[lim sup | aZi, |/7]

where the limit superior is taken over all i,J,m,m’
indicated in Eq. (3.1).

Theovem 2: Let S(g) be a series of the form (3.1)
with exponent of convergence @,. Then the series con-
verges absolutely and uniformly to a holomorphic vector
field everywhere in the interior of the superball (I, Sec.
4), B%(a,). This domain B%(a,) is analytically complete,
and is maximal, i.e., there is no larger superball in-
side of which S(g) converges absolutely and uniformly
everywhere.

As with functions on SU(2), the divergence properties
of S(g) are more complicated than for Taylor’s series.

4. EXPANSIONS OF ANALYTIC VECTOR FIELDS

Let X be a vector field on SU(2). Let S(g) be a series
of the form (3,1) with coefficients obtained by the rule

ati, = (Y%, X), (4.1)

m mm?

We ask the question, “In what sense and under what
conditions does S(g) represent X?*

The power of the present formulation of the problem
becomes apparent here, for the answer to this question,
as in the last section, is an immediate consequence of
the results given in I. Consider a coordinate patch Z
=(z,,... ,z"). In this patch, {g,} provides a basis for
the tangent space at each point in the patch. Hence, in
the patch the field may be written

X:?Xf {2, 9., (4.2)
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(3.4) -

But this is true in every patch, so that X may be
written

XZEXiy;, 4.3)

i

where the X!’s are elements of CF(G) and are the com-
ponents of X with respect to the invariant basis ¢,.
Thus, our question really amounts to “In what sense and
under what circumstances does a Wigner expansion of
Xt represent X!?” We formulate the answer for analytic
vector fields only, and refer the reader to I for discus-
sion of expansion of nonanalytic vector fields.

Theorem 3: Let X be an analytic vector field on SU(2)
and B%(a,) the maximal superball of holomorphy of its
unigque holomorphic extension., Then the harmonic ex-
pansion for X given by Eqs. (4.1) and (3.1) converges
absolutely and uniformly and is holomorphic in B%e,).
The harmonic series converges to X. Conversely, if the
harmonic expansion for X has a superball of convergence
Bs(ao), then X can be continued to a holomorphic vector
tield in B%(a@,) and its continuation agrees with its har-
monic expansion, The exponent of convergence (Def.
3.1) for the harmonic expansion is «,.

5. VECTOR HARMONIC EXPANSIONS ON S?

Once the elaborate machinery was set up, the theory
of vector harmonics on SU(2) was quite simple. In going
from SU(2) to the ordinary sphere in three dimensions,
S2, the situation becomes somewhat more complicated.
These complications occur for several reasons. i1ne
action of SU(2) on S? is, of course, that of rotation in the
ordinary sense, and S$% is identified with the coset space
SU(2)/U(1) (I, Sec. 6B). One wishes to translate results
on SU(2) to S? via the natural mapping 7 of SU(2) onto
S2. Unfortunately, the image of an irreducible vector
field on SU(2) is not necessarily even a vector field on
S%, never mind irreducible on S%. Further, the sphere
is only two dimensional, so that the image of the opera-
tors yi can no longer be linearly independent in the tan-
gent space at a point. Finally, in most physical appli-
cations, it is also desirable to consider vectors which
are normal to the sphere.

To introduce normal vectors to a manifold requires
in general the theory of immersions.!! For the present
case, since 5% is the image of 7, the theory of submer-
sions!” may be used. However, the general exposition
of this construction seems a bit far afield for the appli-
cation at hand. Instead, we present an explicit mapping
which obviates the necessity for the general theory.
This mapping is from the three-dimensional tangent
space at a point of SU(2) to the three-dimensional space
attached to a point of S? formed by the direct sum of the
tangent space and the normal space. The construction
depends explicitly on the metric properties of the mani-
folds and of ordinary Euclidean 3-space. In making this
construction, we automatically solve the other problems
as well and bring our notation into line with normal
physical usage.

The manifold M =52 under consideration may be iden-
tified with the set of left cosets SU(2)/U(1), where U(1)
is the subgroup of transformations exp(- 3i¢c,), where
¥ is the third Euler angle. The identification may be
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made concrete with the following definition (I, Sec. 6B):
(5.1)

where the x,’s are the Cartesian coordinates of a point
in B3, and u€G. It is easily verified that both » and

u exp(- 1iyo,) get mapped to the same point x, and that
$ai=1, i.e., 7:5U(2) — $* such that 7(u) =x as in (5.1).

¥, @) =% Tr(o;u0u™),

At any point p € R®, the tangent vector space CT,(R%)
is three dimensional, In the Cartesian coordinate patch
(which covers all of R®) CT,(R%) is spanned by e, =3/ dx;.
This is a global choice of basis. R® is converted to
Euclidean space E® by the introduction of the ordinary
scalar product

(5.2)

5% as given by (5.1) is a submanifold of E* (Helgason,
p. 23). The differential’® of the inclusion maps , of M
into E%, di, maps the tangent space T,(M) at a point
pE M into the tangent space CT,(E®). If we identify the
image of CT,(M) with CT,(M), we may then speak of
CT,{M) as being a subspace of CT,(E*. A vector X in
CT,(E?) is novmal to 5% if

X*e¥Y=0 for all Y& CT,(M). 5.3

The vector space of all normal vectors at p will be
written CN,(M). CN,(M) is clearly one dimensional. A
globally defmed umt normal vector at p=(x,,x,,%,) is
given by e, =37, x;e,. It is now clear that CT,(R%) =CT,(M)
@ CN,(M) if p<=S?. A vector field of E® restricted to Sz
is a differentiable assignment to each p € S? a vector
X, € CT,(E®). Clearly every such vector field can be
written as the sum of a tangential and normal vector
field. We shall write a “vector field on S%” to mean a
vector field of E® restricted to S* and a vector field
“tangent (normat) to $?” to mean X, € CT, (M)

[X,& CN, )] for all pe M.

If A:E®—E® is a linear transformation, then dA=A
in the sense that dA(e;) =Ae,;. If A€ 50(3) and x€ §*,
then A(x)*s A(x)= (A*A)(x)* o x =x* x=1 so that A : §?

— S, This means that if ¥ is a vector field tangent to
S, then dA(Y) is also tangent to S%. If X, ¢ CN,(M) then
for any Y ¢ T,(M),

0=X;- Y,=AX;+AY,

so that dA(X,) is also normal to S*. Thus the action of
SO{3) on E3 mduces an action of SO(3) on CT(M) and an
action of SO{3) on CN(M). If Xe CT(M) [or X & CN{(H)]
and A € SO(3), we denote by X# the vector field X*

= dA(X). Note that (X4)*+ YA =dA{X)*- dA(Y) =AX*- AY
= X*o Y so that (X4)*. YA=X*+Y, This says that the
usual metric tensor of E® is invariant under the action
of SO(3) and so A — X4 is a unitary representation of
SO(3) on CT(E3). Let & be the two-to-one mapping of
SU(2) onto SO(3) given by Eq. (2.6b) of I. & induces a
representation d& :u— d®, of both tangential and normal
vector fields to S? given by d& X =X °® (which we ab-
breviate X*). From the above it is clear that Xu. ¥Y'*
=X+ Y so that d® is a unitary representation. We will
now search for subspaces of both CT(M) and CN(M)
which are irreducible under d®. In order to utilize the
results of the previous sections we must find a way of
pulling back vector fields from $?=SU(2}/ U{1) to vector
fields on SU(2). This does present a probxern because

e;*e; =06, (globally).

(5.4)
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vector fields behave covariantly, not contravariantly,

so that (unlike differential forms) we cannot just pull
them back. It is possible, however, to pull back vector
fields if the map is a Riemanian submersion, }* To eir-
cumvent this theory, we will present an ad hoc construc-
tion which assigns to a vector field X on §? a vector

field X on SU(2) in a natural way.

Let 7:G—~M and V,={X€ TG | dr(X)=0}.** We say
that H, = {xe T,G1 g(X Y)=0 for all Y€V} is the
horlzontal qubspace at u. If PV, (resp. H,) then P is
called a vertical (resp. horizontal) vector. If X< T{(G),
then X is called vertical (resp. hovizontal) if X_is ver-
tical (resp. horizontal) for all € G. We note explicitly
that: (1) 7 is onto; (2) dr is onto at every point; (3) dn
is an isometry on horizontal vectors [i.e., g(X,¥)
=dn(X)*+ dn(¥) if X and Y are horizontal]. The third
assertion follows from the general theory of submer-
sions (Ref. 17, p. 446). It will also follow from some
computations which will appear later. These are the
three axioms for a Riemannian submersion. Note that
drH,—CT, (M) is an isomorphism. If X is a vector
field on S?, we define X by the equation

g(X,P)=X*- dn(P) for all P€ CT(G). (5.5)

Theovem 4: Let X be the vector field defined as in
Eq. (5.5).

(a) If X is real analytic then X is real analytic.

{b} If X, Y are tangent to S* then X is horizontal,
dn(X) Xand g(X, V) =X"-Y.

(c) If X is normal, then X=0,

Proof: (a) It suffices to write X in local coordinates.
For convenience, we choose the Euler angles on SU(2)
{which we denote temporarily by (&, 6’,%)] and polar
coordinates on S? {denoted 9,®). From the explicit reali-
zation of 7 given by Eq. (5.1) [see also Eq. (6.29) of 1]
we have that 7(®’, 8" ,¥)=(4,d) such that 0==6’ & =",
Thus, we have the result

& 0

dn (557) = é&—), (5.63.)
d d

dﬂ' <ae,> = 8—9‘ . (S.Gb)
a

dn <‘8—‘ﬁ) =0. (5.6c)

Decomposing X into tangential and normal components,
we may write X=X°3/3% +X°3/36 + X"e,, while X may
be written X = X%/2& +X"a/69 +XWa/a\11 where primes
have now been dropped. Choosing P in Eq. (5.5) to be
3/ad, 3/38, 3/0%, respectively, using the metric com-
ponents g(3/3®,2/3%)=cos¥d, (3/3®) - (9®) = sin®6,

etc., applying Egs. (5.6), and complex conjugating, we
obtain the three equations

X®+X%cosf=sin?0X°, (5.7a)
XP=Xx®, (5.7p)
X®cosh+X¥=0. (5.7¢)

These have the solution
Xe=x°, (5.8a)
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(5.8b)
(5.8¢)

Xezxa,
X¥=-cos8X°,

Thus, X is manifestly analytic in this patch if X is
analytic. Similar results prevail in other patches, prov-
ing the assertion,

(b) If P is any vertical vector [d(P)=0], then
g(X P)=X*+dn(P)=0 so that X is horizontal. In the
Euler angle patch we have, using the metric compo-
nents again,

X, P =XeTo+X0?+X¥T¥

- = L (5.9)
+(X°Y¥+X¥Y %) cosh.
By using Eqs. (5.8) this becomes
2(X,Y) =X °Y ®sin?6+ X°V? (5.10)

which is just X*+ ¥ when X" =Y7=0. This demonstrates
the second assertion.

(c) Finally, it follows immediately from Egs. (5.8)
that X=0 if X®=X*® =0, which is the condition that X
is vertical.

We would like to extend the map X~ X to be a vector
space isomorphism CT,,,(E?)— CT,(G). We do this by
defining X - X if X is tangential, and e, —~ €, where we
have picked some global unit vector field € on G for
once and for all such that ér is vertical. Inspection of
Egs. (5.6c), (2.25¢), and (2.35) tells us that € may be
chosen to be 0(/3. Thus, we let e, —¢,, and extend this
map by linearity to other normal fields. If X is any
vector field on SU(2), we may pointwise decompose X
into its horizontal X* and vertical parts X°. If both Xv
and X* are projectable onto a vector field X® and X"
which are normal to S% and tangent to 52 respectvely,
then we define dn(X) to be X *+X"*, Note that dr is not
defined on all vector fields of SU(2). ;I‘he following is
immediate from the construction of dr and Theorem 4,

Proposition 1: g()?,?):X
are vector fields on $? .,

« Y for all X and Y which

We now explicitly give the irreducible vector fields X
on $% and their pullbacks X. Clearly the action of u€ G
on vector fields on S gives rise to the same action on
their pullbacks. This in turn must be the same as the
differential action dL, on CT(G). Thus, irreducibles on
S2 must be related to the irreducibles on SU(2), which
we already know. At this point, let us introduce some
convenient linear combinations of irreducibles on S2:

v, = () @+
l’”‘(21+1)> Wzm-<<2‘l+—1)> Vims

1 L\ 141\
A= T [X'm; <2z+1> Vin® <zz+1> W!m]'

(5.11b)

(5.11a)

Xims Vin» and W, are the irreducible vector fields on
S? given in Ref. 19 which are in relatively common

usage. N, is normal, while Af are tangential.

The pullback of normal fields is the easiest, as we
have the relation

17 J. Math. Phys., Vol. 16, No. 1, January 1975

=(fom Y. (5.12)
Using the fact that
N, =Yre, (5.13)
and the relation
47 \ /2 e
yields the relation
N, = (= 121 +1/4m)1 2G5 (5.15)

The set of all §2%,, ! integer, —m <I<m, is all of the
irreducible vertical vector fields on SU(2)

Introducing the ladder operators ﬂ¢ by the rule
y¢ :0(11 ® iﬂz

and using Eqs. (2.25) and (5.8), we may write the pull-
back of a tangent vector field as

(5.16)

= 1 (X% +iX®sind) exp(— illf)y
5.17
X= { (X% -iX®sinb) exp(z\ll)/ ( )
Associated with ¢,, we introduce the vector fields
= g g2} (5.18)

From (5.17), and (5.18) and the form of D/ . it is clear
that, for an irreducible to be a pullback, it must be of
the form ¢77 or §7*,. The fields Aj, have the explicit
form

aYr m 1 2 .3
— -1/2 21 L Ym —_— ] —
A, =200+ 1] ($ 26 " sing Y*) <sin9 a9 ** a@) :

Again using Eq. (5.14), as well as Egs. (5.17) and
{5.19), we find

1/2
A*m = (— ]_)m <$l(;—+ll_)) [exp(:F i\I’)

(55 7 am) (25)] 4+

Using the explicit form of the ladder operators (Q*, we
find that

(5.20)

m

Ju(DL, o) =% exp(ri¥) (aae ¥ —) (DL, ).

Sind (5.21)

It may further be verified that the operators ¢, act as
ladder operators on the second index so that

4, ) =[{=2) @+ 1 +1)]*/? D}

“medl?

(5.22)

where the sign must be determined by looking at the
explicit expressions. Combining this information finally
yields

= 21+1) /2
A =3 (-1)m < o ) o (5.23)
The set of all §}*_, for [ integer, ~m <I<m, is all of

the irreducible horizontal fields on SU(2}.

An inner product { , ) is normally defined for vector
fields on S? by the rule

X, V)= [ daXx*-Y (5.249)
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where d€ is the usual measure on S? (with total area
4rm). An elementary calculation using Prop. 1 shows
that

(X,Y>:47T(X,f’). (5.25)
Note also that
<Nlm’Nlm> <A1m’ >:17 (5.26)

with other scalar products vanishing. It follows im-
mediately from the preceeding discussion that the con-
vergence of vector harmonic series on S and the rep-
resentation of vector fields on S% in harmonic series
are but special cases of the theorems given in Secs.

3 and 4.

6. TENSOR HARMONICS

In this section we shall carry out the program of
Secs. 4 and 5 for general tensor fields. We shall first
investigate the special case of differential 1-forms. Re-
call {Helgason, p. 8) that a complex covector at me M
is a linear map w,_: CT_(M)— C. A 1-form is a choice
for each m of a covector w,, such that w(X) is a differ-
entiable complex valued function on M for each
X< CT(M). We denote the vector space of all 1-forms
on M by CT®*(M). Suppose now that M has a Riemannian
metric g. If X< CT(M), then we define X to be the dual
vector field to X (with respect to g) by

X(¥)=g(X,¥) forall Y& CT(M). (6.1)

Classically, the assignment X—X is called “raise an
index.”

If G is a Lie group and # € G, then we define
w*e CT*Y(G) by

w*(X) = (@ (AL 1 X))* = (w (X)) (6.2)

where we have used (2.16) for the last equality. The
representation u —~ w* is called the left adjoint (contra-
gredlent) d1fferent1a1 representatlon of G. We use (6.1)
to defmey see (2.24)] and / (see (2.27)]. We may
now consider a series expansion similar to (3.1):

=2 5 LT @reD a6 .

=1 J=l m==d m

{6.3)

Theovem 5: () (¢ generates a one-dimensional in-
variant subspace of CT%!(G) on which the left adjoint
differential representation is unity.

(b) If m' and i are fixed, then {f" —Jd=m<d}isa
basis for a (2J +1)-dimensional unitary irreducible
representation.

{c) The expansion (6.3) has the same convergence
properties as expansion (3.1).

Proof (a) From (6.2) (/ (Yu" thus
(gz (V) =g(g,, v*™) =g(¢;, Y) / ) holds for all
Ye CT(G) and u< G. We therefore see that {Q’ forms
an invariant one dimensional subspace. (b) follows
directly from the following computation:

/“ )u (X) /;{ll (X
= (T(/ \’u
:g((/;;n.w,x).
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Invoking Eq. (2.26) with # equal to the identity gives
D], i) g1k, X
or

(Jme)1(X) =D, (u")gm,

(c) follows because a sequence of vector fields X, con-
verges in CT(G) if and only if g(X,, ¥) converges for all
Y € CT(G) which is precisely the statement that the X
converge in T°{(G).

We now make some remarks concerning expansions
of arbitrary tensors in terms of harmonic tensors. Let
CT7s(M) be the complex vector space of tensors of type
(r,s) on M (Helgason, p. 9). The left differential rep-
resentation of G induces a representation called the
left tensor representation on CT™s(M) by using the left
differential representation on the s contravariant
factors and the left adjoint differential representation on
the »-covariant factors, to wit: If w'l, ... w's< CTO1(M)
and X, ,..., %, € CT{M), then

(X; @2 X, 20M@ec e @io)
r

:Xlﬂlfg). Y- Xlur® (Wi R o+ ® (wis)". (6.4)
We define

t veersl

W= g g B e 69

Let J, m, and m’ be integer or half-integer, and i
=0y, ..s8,00, ..., 1) be an (r +5)-tuple of integers
each of Wh1ch s elther 1, 2, or 3. Define the tensor
harmonics ﬂ-" by z/’{"’"_DJ Foeeerts

mm'S e ..11,

We may also consider series expansions of tensors
in terms of tensor harmonics analogous to (3.1) and
(6.3):

TW=% % E Z @J+1) ali gnt.

7 J=1 m==J m'=z-g

(6.6)

and investigate the convergence properties of (6.6).

In analogy to definition 3.2 we define the exponent
of convergence ¢, of the series (6.6) to be a,
= -log(lim sup | a7, { /7) where the limit superior is
taken over all J, IV' M' and multi-indices i. A tensor
T of type (r,s) converges if T(X,...,X,) is a con-
vergent -tuple of vector fields for all vector fields
X,,...,X,. It is also clear that the scalar product on
CT(G) can be extended first to CT"(G) and then to all

of T"'S)(G). We now let
mm' - (gmm"

Theovem 6: (a) /‘ii is invariant under the left
tensor representation.

(6.7)

(b) It J, m’, and 7 are fixed then { ¢/, 1 - J<m< J}
generate a vector subspace of T *'$(G) on which the left
tensor representation is unitary and irreducible.

(¢) If T is an analytic vector field on SU(2) and B%,)
is the superball of radius @, [where &, is the exponent
of convergence of the series (6.6) with coefficients given
by {6.7)], then the series {6.8) converges absolutely
and unformly in B%(ag) to T.

B.L. Beers and R.S. Millman 18



We shall now construct the horizontal lift of tensors
on $2. If w e CT%(S?) and 7 :5U(2)—S? (see Sec. 5),
then 7w € CT*{SU(2)) is defined by 7*w(X) = w(dn(X)).
If we have a tensor, T, of type (r,s) on $2, then we may
(at least locally) write

(6.8)

where X, € CT(S?) and w! € CT**(S%). The horizontal 1ift
of the tensor T is then defined to be

T=X;® - 3 X, Qul®+++ DwS,

T:)?l-x-u-éa)?r%n*(w‘)@°-°®7r*(w$). (6.9)

If we have an arbitrary tensor as defined in (6.8), we
may pull it back to SU{2) as in (6.9), express it as a
series [Eq. (6.6)] and then push it back down to S? via
the map dr of Sec. 5. To determine which of the irre-
ducible tensor fields on SU(2) are pullbacks, one must
use the Clebsch—Gordon series for the tensor products
of irreducible vectors and forms. We may handle in a
similar manner tensors which are normal to 5%, i.e.,
tensors T of the form

T=fe,®+'2e B8 @R,

where e_ is the normal vector field on 5% given as in
Sec. 5 and &, is the dual of &, as in Eq. (5.5).

7. LIE ALGEBRA OF VECTOR FIELDS

We have shown that the set of all gi;", form a basis
for the space of vector fields on SU(2), CT(G). As men-
tioned CT(G) is also an infinite-dimensional Lie algebra.
This algebra is specified by giving the commutation
relations of the basis. We have, for example,

4y 3 Jp3
[y(zmll).l’ m;lzl
=0, = 1) 2 CW ddsmom,) CW W 0,)
s

(73
X /”’1""2’ Aytaz?

(7.1)

where the C’s are the usual Clebsch—Gordon coeffi-
cients, Similar relations may easily be displayed for the
other commutators. The main point is that a canonical
procedure has been specified whereby the Lie algebra

of vector fields on the group may be explicitly displayed
(all other relations being linear combinations of the
bases relations). This canonical procedure for uncover-
ing the structure of the algebra should be of use in any
studies of the algebra and its representations.

We mention this because the Virasoro algebra'® can
arise in a similar construction.® On the simpler group
U(1)=~S!, the irreducible vector fields are given by

L =(~i)expimd) /5, (7.2)

where & is the usual polar angle. The commutator is
[Lm,Ln]:(n.—m)me (7.3)

which is just the Virasoro algebra without the C-number
term. It is interesting to speculate whether the gen-
eralization given by Eq. (7.1) and associated relations
might permit more realistic dual-resonance models.
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Dual trees and resummation theorems*
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Various resummation theorems known for graphical expansions in statistical physics and field theory
are exhibited as special cases of a single symmetrical, easily remembered theorem on a generalized

structure we call a dual tree.

. INTRODUCTION

Graphical summation is now a common technique in
physics. Graphs are constructed according to some
simple recursive rule, and to each graph is associated
a value determined algebraically according to the
topology of the graph. The physical quantity of interest
is expressed as the (infinite) sum of the values of all
graphs. In a resummation theorem, the sum is proved
identical to a sum derived in some other way, typically
from a smaller set of graphs with modified rules for
assigning values.

Many resummation theorems have been proved for
various graphical systems. These theorems have a
family resemblance, although the detailed statement
and proof varies from system to system according to
the kind of graph considered and the way its value is
determined. In this paper we shall bring a whole family
of such theorems into a single theorem, stated and

B0

FIG. 1. ATl 12 inequivalent dual trees with ng=2, ng=3.
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proved once for all. To this end we define a particular
kind of graph, which we call a dual tree, composed of
two elements designated arbitrarily as squares and
circles. By suitable interpretation of these elements,
the system of dual trees can be transformed into any of
a remarkably wide variety of known graphical systems.

In Sec. II we shall define the dual tree system and
state its resummation theorem. We have two proofs,
both derived from arguments already in the literature.
The proofs are given in Appendices A and B. In the
following four sections we shall derive a number of
well-known results from this theorem, thereby exhibit-
ing the flexibility of the dual tree concept. We conclude
in Sec. VIIL.

{l. CENTRAL THEOREM

By a “dual tree” we mean an assemblage of ng
squares and n, circles (g +n, 2 1) joined by », lines
under the following restrictions:

1. Each line joins a circle to a square-—never a
square to a square or a circle to a circle.

2. The whole graph is simply connected—it cannot
be decomposed without severing a line, but the removal
of any single line would render it decomposable.

The use of squares and circles has no geometrical
significance; it is an aid to visual representation.

The ng squares are distinguishable and to that end
are labeled with integers from 1 to »;. Similarly the
n circles.

Two dual trees (from now on we shall drop the word
“dual”) are identical if they have the same topology,
with the labeling taken into account. Fig. 1 shows the
twelve distinct trees having ng =3, n, =2.

We assume that for each nonnegative integer n, two
symmetric functions on » arguments are given, which
we call S, and C,. The arguments of all these functions
vary over the same domain X. For »=0 there are no
arguments, so that S, and C, are constants.

Let S(£), C(£) represent arbitrary functions on an
argument £ c X. We define the functionals

D=L Gl g)IS(E), ®

FOD A, L S, ) O @
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FIG. 2. Transformation of Cayley tree to dual tree.

where f,1 ... represents integration or summation with
n

respect to a measure defined on X. The term in n=0

has the value C, in (1), or S, in (2).

To each tree T we assign a value w(T) as follows.
The n, lines are given an arbitrary order. To the ith
line we associate a variable £, X. To each square
(attached to lines i, ¢~ - Z, ) we associate the quantity
S, (& oo¢ & ). To each c1rcle (attached to lines §;°<- 7 )
we associate C(k; =+ & ). The product of all these S-
and C-functions we call TH(g, - -+ &, ,)- We obtain w(7) by
summing IT over all the £s and d1v1d1ng by nglng! .

Thus the first six trees shown in Fig. 1 each have the
value

1

w=3121

f 51(51)82(523 gg)sl(gq)cz(gly gz)C2(£3’ 54)
21828384

and the last six have each the value

w:_ll_f f 81(51)52(525 ES)SI(‘E4)C3(‘51’ Ea, 54)01(52)~
312! 182t sty

We now define

TE;W(T) (3)

where the sum goes over all distinct trees.! Regarding
7 as a functional on §,, C,, S,, C,, °>+, we define
S(ey=07/5C,(¢), C(¢)=67/5S,(£). )

Our central result is the following theorem.

Theorem 1: Given the above definitions, the following
relations hold:

0(5):§ncw(r), }(E)z;nsw(r), (5)

5(r) = T T(r) =00

SO=5¢®].c0 ‘W50, (6)
7=0@)+37(©) - [S()T(). )

We shall defer the proof (two versions) to
appendices.

Corollary: Let the above definitions be modified as
follows. Let S|, S,, S,, --¢ all be functions of one argu-
ment. For each tree T, let IT(£,-=° E,,s) be defined by
attaching &, to the ith square, associating S_(£,) to the
ith square where m is the number of attached lines,
and associating C (.E, oso £, ) to each circle (attached
to squares i,+- 7 ). Obtain"w from 1 as before. Re-
place (2) by

FO=2 nt s, (@] (®)
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Retain (1}, (3), and (4). Then (5}, (6}, (7) are still
true.

This follows immediately from Theorem 1. For the
values of w(T) and 7(C) so obtained are the same as
would have followed from the old definitions if the S,
had the form

S, (Eyoee E)=08(E o+ £)S (&) 9)

where 6(g ¢+ £,) is a suitable product of Kronecker or
Dirac 6’s, depending on whether X is discrete or
continuous,

111, THE NUMBER OF CAYLEY TREES

As a simple application of Theorem 1, we derive a
theorem due to Lee and Yang? on the number of doubly
labeled Cayley trees of order [. Such a tree is just a
simply connected graph composed of [ labeled points
joined by I —1 labeled lines. Letting A, denote the
number of ways to do this,® Lee and Yang showed that

~P A=Y (=112 1=D+ LD (10)
1=1
where
DeéP =x. (11)

To reproduce this result from Theorem 1, we trans-
form Cayley trees into dual trees by inserting a square
into each line, and replacing each point by a circle, as
shown in Fig. 2. In this way we obtain only those dual
trees in which all squares have order 2. We insure that
all other dual trees have no value by setting S, =0 for
n+2. We let the domain X consist of one point, so that
all the S, C,, 3, C, are numbers instead of functions.
We let S,=-1, and C,=x, independently of ». Then
we have n, =1, ng=1-1, and hence

1
-1

for any dual tree 7 that corresponds to a Cayley tree of
! points. It follows that 7 is just the left side of Eq.
(10).

Putting our definitions of C,, S, into (1) and (2), we
have

w(T)_ (=)-1xt (12)

D(S) =3 n!"lxSm = xeS, 13)

FCO)=21"Y(-1)c2=~4C? (14)
and so (6) becomes

§=-C, C=xé (15)

from which we immediately obtain {11) on setting D

=C.
Now if we use (15) to write (13) as
p@)=cC
and substitute, with (14) and (15),
7=C+(-3C?~(-0)C
=C+3iC?

(16)

into (7), we obtain

1)

which is equivalent to (10).
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FIG. 3. Graphical expansion of G; and G, in terms of irreduc-
ible vertices I, and propagators G,.

IV. THE GENERATING FUNCTIONAL OF
IRREDUCIBLE PARTS

For our second application, we have in mind any sys-
tem in which a sequence of Green’s functions is gen-
erated by some functional g on an external field J.

Suppose that we have symmetric functions
Gz(xnxz)a Gylxy, Xy, %g) 70

where the x’s may be position vectors in 3-space or in
space—time, or may also contain intrinsic information
(spin, etc.). We introduce a complementary sequence
T,(x,,%,), Tulx;,x;,x,), etc. The first has a special
definition

r,=-G; (18)
where the meaning of (18) is that
[T, x)G, (0, 205 = = 6(x,, x,). (19)
X2

The higher I'’s are uniquely defined as the irreducible
vertex parts in a graphical expansion for the higher G’s.
That is, each G, (> 3) can be obtained from G, and
T,, I',, - by the following prescription: Take all
possible unlabeled Cayley trees with n labeled end-
points, and with no vertices of order 2. Associate the
variables x, -+« x, with the endpoints in the specified
order. In each tree, associate extra variables x,{i > n)
with each insertion of a line into an internal vertex. To
each vertex of order m, assign a factor l"m(xil,xl.z, sy
x, ). To each line, assign a factor G,(x;,x;). Integrate
th® product of all these factors over the x, (i>n) and
sum the result over all the permitted Cayley trees with
n endpoints. The result is G, (x;,x,,...,%,).

Thus

. Ty (xy, %5, %) G (x4, x,)G,(x,, %)
5%

Ge(xuxz’xs):fx .
4

X Gy (g, %), (20)
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G4(X1,x2,x3,x4):f

x5o-ax Ps(xs7xssx7)r3(x8,xgyx10)

10
X Gy, %10)Gylx, ’xs)Gz(xz, x6)G, (x4, X,)
X Gylxy, %)

+cyclic permutations on x,, x,, x,

* 'fxssoexs F4(x5,XG,X7,X8)Gz(X1,xS)GZ(:{z, xs)

X Gylxg, 2,)Gylxy, x5) (21)
and so on. (See Fig. 3.)
It is easily seen that if m is the order of a vertex,
om~2=n-2 (22)

and therefore only a finite number of trees contribute to
G, involving only I';--+ ", and only one tree involves
T',. Therefore I',, T',, --> are uniquely determined by
(20), (21), etc.

Now 1etg and K be the generating functionals

g(J):ge: n!-lfxlu..x G, o0 x,) I?J(Vt) (23)
K(A):?n!'lfx o Dalryees xn)l"ITA(x,.). (24)

It is a well-known theorem,* but one whose proof is
usually indicated rather than given in detail, thatg and

K are related by a Legendre transformation. That is,
if we let

5G ()
A(x): GJ(x) , (25)
then
GO =K@+ [ Jx)AK). (26)

We shall now obtain this result from Theorem 1.

By combining (23) with (20}, (21), etc., we obtain
g(J) as a sum over all Cayley trees. In this sum, each
m-vertex (m > 2) contributes a factor T’ . eachline a
G,, and each endpoint a J. Any 2-vertex contributes a
factor 0. Only the endpoints are labeled, and we are to
divide by #n! where » is the number of endpoints. The
term of (23) with »=2 is included naturally if we count
the Cayley tree with one line and no vertex.

We convert each Cayley tree into a dual tree as
follows. First we insert a square into each line as in
the previous section. The variables x; are now asso-
ciated with the newly formed lines.

The labeling of the endpoints renders all ng squares
inequivalent. We may therefore label all the squares
and compensate by dividing the value of each tree by
ng!, since there are now ng! as many labeled trees as
before.

The labeling of the squares now renders the endpoints
inequivalent. Therefore we may drop the labeling of
endpoints and compensate by omitting the factor n!™',

We now replace each vertex and each endpoint by a
circle. All the circles are inequivalent because the
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FIG. 4, Transformation of Mayer cluster graphs to dual trees.
Note that (a) and (b) give the same dual tree.

squares are labeled. Hence we may label the circles
and divide by #,! where n, is the total number of
circles.

g is now given as a sum over dual trees, and the
contribution of each dual tree T can be identified with
w(T) as defined in Sec. II, provided that X is the domain
of the x’s and

S;=G,, S,.,=0,
2n
Co=C,=0, C,=J, C,,=T,.

Hence we may identify 7 withg ., and § with A, [Com-
pare (25) with (4).]

Putting (27) into (1) and (2), we have

DO = [ IWAR+Tn? [ T,lq0 e 1) HAE)

=J, JWAR +K(A) -3 fmz T, (x,, %,)A(x,)A(x,)

(28)
and
F(©) :%frlxz G, vy, x,)Clx, )C(x,), (29)
whence
§(x):_fx' G,(x,x")C(x’) (30)
by (6). Therefore,
F(O) - fx§(x)(_3(x) = - %fx§(x)'c_(x)
= %fx . §(x1)6 (xl ’ xs)c(xs)
= %f"l"z T, (x,, %,)08(x,)S (x,) (31)

on account of (19) with (30).
If we add (28) to (31) and use (7), identifying § with 7
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on the left side and S with A on the right, we obtain the
desired Eq. (26).

V. MAYER CLUSTER EXPANSION

It is well known® that the pressure p and density p of
a gas of short-range interacting particles obeying
classical statistics are given in the thermodynamic limit
by

p/kT:lE1 b,zt, p:lzllb,zz (32)

where z is the fugacity and b, is defined as follows.
Take ! distinect (labeled) points and connect them by
lines. Each pair of points may be connected by at most
one line. Enough lines must be drawn to bind all [ points
into a connected graph or cluster; it need not be simply
connected. Now assign a position r; to the ith point. To
each line (joining the ith and jth points) associate the
quantity f(ri - rj), where f is a certain temperature-
dependent even function of short range. Multiply the f’s
together, integrate with respect to all the r’s over the
volume V of the gas, sum over all clusters of [ points,
and divide by VI!. The result approaches b, as V-,

Mayer and coworkers® observed that any cluster can
be uniquely resolved into {one or more) irreducible
clusters joined together through common points in a
simply connected manner. An irreducible cluster is
one which cannot be severed by the removal of any
single point and the lines attached to it. They showed
that if (¢ +1)*8, is the contribution of single irreducible
clusters to b,,, then the elimination of z from (32) yields

p/szp(1 -5 (k+1)~1kskpk). (33)
b=

The same result can be obtained easily from the

corollary to Theorem 1.

We first show how each cluster of / points yields a
dual tree with ng =1, unique except for the labeling of
circles. Simply resolve the cluster into irreducible
parts; for each irreducible part introduce a circle con-
nected by lines to each of the constituent points: erase
all the original lines between points, and replace the
points by squares with the same labels. (See Fig. 4.)
There are now n.! distinet ways to label the circles—
distinct because the squares are labeled already.

To a given tree may correspond more than one dis-
tinct cluster, because a circle with > 3 lines attached
may represent any of a plurality of irreducible clusters.
(See Fig. 4. a, b.) All the clusters that reduce to the
same tree may be grouped into a species.

To apply the Corollary, we take £, as r;, the position
of the ith particle; X as the space occupied by the gas;
S,(r)=z for all », r; and C,(r,,...,r)=7T1f(r, -r,),
where the sum goes over all irreducible clusters of »
points, and the product is over those pairs i, j joined
by a line of the selected irreducible cluster. It is
easily seen that for any tree 7, the contribution of the
corresponding species to z"Sb,  is just (nc!/V)w(T).
Since the species yields n.! distinct trees, the com-
parison of (3) and (5) with (32) yields

T=pV/ET, F(C)=pV. (34)
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On the other hand, 7 is given explicitly through (8) as

}(C):fv d®rz exp[C(r)] (35)
and the use of (6) gives
S(r) =z exp[C(r)]. (36)

In the limit V—~«, the range of f remaining finite, the
functions § and C as determined by (4) or (6) will be r-
independent except for a negligible region near the
boundary of V. Therefore (35) and (36) yield

F(E)=VS (37)
and, from (34),

S=p. {38)

Finally, by comparing the definition of 8, with that of
C,,, and using (1), we obtain

DE)=VE (e + 1) g5 (39)
for any constant function S. Using (38) we have

DE=VE (:+1) 8,0 (40)
and using (6) we get

c =280 (41)

The substitution of (34), (38), (40), and (41) into (7)
yields (33) directly. Also from (36), (38), and (41) we
may solve for z, obtaining

lnz:lnp—zﬁkp”v (42)
%

The proof of Theorem 1 as applied to this example
may be regarded as a relatively inefficient version of
a derivation of (33) and (42} given by Uhlenbeck and
Ford.” The advantage of the present treatment is that it
places the result in a more general perspective.

VI. OCCUPATION-NUMBER EXPANSION IN QUANTUM
STATISTICS

Lee and Yang® found that the logarithm of the grand
partition function for a system of interacting Bose
particles could be expressed as the sum of connected
diagrams (“primary 0-graphs”) formed as follows:

Every line is directed; it begins at a vertex and ends
at a vertex, possibly the same one. Every vertex has =
lines entering and = lines leaving, where n is a positive
integer pertaining to the vertex; a 1-vertex has n=1, a
2-vertex has n=2, etc. Each line is associated with a
momentum variable k.

To evaluate a graph, we take a factor z for each line
(z = fugacity) and a factor Y"(kil- o ky sk e kjn) for
each n-vertex where i,°°« i are the indices of the in-
coming lines and j,+ -+ j are those of the outgoing lines,
and Y, is a function whose form need not concern us ex-
cept that it is symmetric in the k,’s, symmetric in the
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ks, and vanishes unless momentum is conserved, that
is unless

2k, =

n
p=1 ¥

M:‘.

R, . (43)
I 4

<
i

We multiply all these factors together and divide by the
symmetry number of the graph. Graphs differing only
in the labeling of lines are not regarded as distinct.

Let us regard z as a bare propagator for these lines.
In an obvious way, Lee and Yang introduced a clothed
propagator M(k), obtained by modifying a line of mo-
mentum % with all possible insertions [see their Eq.
(1v.21)]. They also defined a half-clothed propagator
m (k) by allowing only 1-vertex insertions; thus

mkyi=z- v, (k. k). (44)

Physically, the quantity z71A7(k¥) = 1 is the mean occu-~
pation number of the particle state &, and z-'m (k) =1 is
that occupation number in the absence of interaction,
but still under the influence of Bose statistics.

After various manipulations, they found that the
logarithm of the partition function could be written as

14 :? In[z~* M1 (k)] - kE m (Y M E) = m(p)] + 7 (45)

where P’ is the sum over all irreducible graphs, ex-

cluding 1-vertices and replacing z with M(k) for each
line, [See their Eq. (IV.33).] By an irreducible graph
is meant one that cannot be severed by removing two

lines.

Our purpose in this section is to derive (45) from the
Corollary to Theorem 1. The treatment can be adapted
to Fermi statistics by trivial modifications.

Other authors”'® have developed a field-theoretic
graphical expansion for the logarithm of the partition
function, more closely related to perturbation theory.
From that expansion one obtains a formula [Eq. (47) of
Ref. (9)] just like Eq. (45). However, each vertex then
corresponds to a single application of the interaction
Hamiltonian, whereas the vertices of Lee and Yang
correspond to modified scattering matrices; and the
variable % has not only the three momentum components
but also a fourth energylike component that varies dis-
cretely in steps proportional to the temperature.

The differences, however, between the formalism
just described and that of Lee and Yang are completfely
inessential to what follows. Therefore the work of this
section is equally applicable to both, although we shall
use the notation of Lee and Yang.

It is, on the other hand, essential here that » be con-
served at each vertex as expressed by Eq. (43). This
restriction distinguishes the subject matter of this sec-
tion from that of Sec. 1V, in which k-conservation was
not assumed for the Fourier-transformed vertices.

Before describing the reduction of graphs to dual
trees, we need some preliminary results concerning
the graphs themselves.

Let us say that two vertices V| and V, are well-
connected if the removal of any two lines from the
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graph leaves V, and V, still joined by a continuous path.
Well-connectedness is clearly an equivalence relation.

Let us say that two lines ¢ and j are velated if the
graph falls into two parts when i and j are both re-
moved. By k-conservation, any two related lines must
have the same %. But the converse also holds. For if ¢
and j are not related, there must be a continuous path
connecting the head of 7 to its tail, not traversing either
i or j. Therefore it is possible to increment &, without
incrementing k,, and still conserve % at each vertex by
applying the same increment everywhere along this
path,

Since 7 and j are related if and only if they are re-
quired to have the same k, relatedness is also an equi-
valence relation. We shall call the equivalence classes
families of lines.

We now state a crucial topological lemma.

Lemma: The lines in a family have a unique cyclical
ordering such that the head of each is well-connected to
the tail of the one following.

The truth of this is intuitively evident, and it is used
without proof in most treatments. For completeness we
give a proof in Appendix C.

With the help of this lemma, we can express the
logarithm of the partition function as a sum over dual
trees. The transformation from graph to dual tree will
have two parts: first we shall transform each graph G
into a circuit graph J, and then we shall transform each
circuit graph J into a dual tree T.

We start by labeling all the lines in G. This yields
n, !/ o distinct labeled graphs, where #», is the number of
lines and ¢ is the symmetry number. To compensate we
divide by #,! instead of ¢ in evaluating each graph. Thus
the value of a labeled graph is n,!2"3,,V, {#}) where
Ve {#}) is the product of the functions Y, for each n-ver-
tex and {k} represents the », variables .

Next, we form J by identifying all vertices in G that
are well connected, without destroying any lines. It
follows from our lemma that the lines of each family
now form a connected circuit, and for this reason we
call J a circuit graph.

We now define the value of J to be the sum of the
values of all labeled G’s that yield  under the foregoing
operation. This sum may be evaluated from the struc-
ture of J in the following way.

If we let P be the set of vertices in G that condense
into one vertex P in J, then the topology of P and of all
the lines attached to it is completely contained in the
graph / that is formed by deleting all vertices of G not
in P and all lines of G not attached to P, and connecting
each line that leaves P with the related line that enters
P. Iis an irreducible graph, since each family has only
one line. (The reverse transformation, from I to G,
may be regarded as the placing of insertions on the lines
of 1.)

It follows that G may be reconstructed from J if for
each n-vertex P in J we are given the corresponding »-
line irreducible graph I in G. Since v{(G) is just the
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product of »(I) over all P in J, we can write the value
of J as n, 172y, u, {k}), where u,({k}) is the product
of factors C, (k- k,)} for each n-vertex P of J. It is
now understood that each circuii (i.e., family) is
assigned a variables k, and %, --- k_ are the variables
assigned to the » circuits passing through P. The func-
tion C,(k,+ - k,) is just the sum of v, (% -~ k,) over all
ivreducible graphs I.

The reduction of G to J is equivalent to that described
by Bloch*! in treating this problem. We now proceed
to transform J into a dual tree T.

First, we label all the vertices (let their number be
n.) of J. This yields n,! different labeled circuit
graphs, since each vertex is already specified uniquely
as the head of some labeled line. We compensate by
introducing an additional factor n,!™ into the value.
The vertices of J will be the circles of T'.

Next, we place a new element, a square, at the
“center” of each circuit of J, and connect it by “new”
lines to each vertex of the circuit. The variable %
associated with the circuit can now be regarded as
belonging to the square, Let 5 be the number of
squares—that is, the number of families in the orig-
inal graph G. We label the squares, increasing the
multiplicity of structures by ng! since each square is
already distinguished by the labeled lines of its circuit.
We compensate by introducing a factor »n4!™! into the
value, which is now given by ng!™ng!"tn, 1723 1, (k).

The final step is to erase the »n, “old” lines, those
forming the circuits of J. The remaining structure 7
is a dual tree since the “new” lines only join squares to
circles and the removal of any line of T (corresponding
to the removal of two successive members of a family
of G) splits T into two parts. However, the erasure
has reduced the multiplicity of structures by a factor
calculated as follows.

If we examine a square of nth order in T, we find
there are (n—1)! ways to order the n neighboring
circles cyclically, and hence {(n —1)! ways to draw in
the n “old” lines of the circuit corresponding to this
square. After all the “old” lines have been restored,
there are n,! ways to label them, since each is already
specified by the labeled square associated with its cir-
cuit and the labeled circle at its head. So the multiplici-
ty has been reduced by {n —1)! for each square of nth
order, as well as by an overall factor »,!. To compen-
sate, we omit the factor #,!™* from the value and intro-
duce a factor (n—1)! for each square of #th order in T,
in addition to the » factors z inherited from the “old”
lines of the corresponding circuit.

The value assigned to T is now identical with wy,
provided that we define
S, (kyoce k)=(n~1)12" (46)
for n=1,2,---, and S, =0. The cyclical ordering factor
(n~1)! is the distinguishing feature of this application
and is the origin of the logarithm in (45). The whole
transition from G to J to T is depicted in Fig. 5.
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(d)

FIG. 5. Transformation of Lee and Yang’s primary 0-graphs
to dual trees. (a) From labeled graph G to circuit graph J. The
upper two vertices in G are well connected and coalesce in J.
() From circuit graph J to dual tree T (labeling not shown).

{c) Another graph G’ that yields the same J. (d) Another circuit
graph J’ that yields the same T.

The derivation of Eq. (45) is now straightforward.
From (2) with (46) we have

}(c):i 2 2t CER)/n=7, n[l - zCR)]* (47)
n=1 R k
and hence, from (6),
S(k)y=2z/[1-2C()]. (48)

Now, § is just the M of Lee and Yang. This can be
seen either from Eq. (A3) of Appendix A or from Eq.
(4), noting that M(k) is the functional derivative of the
logarithm of the partition function with respect to a k-
dependent point insertion in the propagator,

1t follows, from (1) with our definition of C,, that

0@):2%2" »

I21.e0ky,

vy ey oo kn)ﬁxM(ki) (49)
i=

where ¥} denotes the sum over all irreducible graphs

I having » lines. But (49) is just the quantity /" appear-

ing in {45), except that P’ is restricted to graphs with

no 1~vertex. However, the only irreducible graph that

has 1-vertex is the one consisting of one line, and its

contribution to /) (S) is

2 ME)Y, (k) =20 M(R)z™* = m (k)] (50)
on account of (44). Therefore
[)(§):p’+§M(k)[z"—m(k)'l]. (51)
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If we write (47) and (48) in terms of S—that is, M—
we obtain

F(©) :‘1@ In[zM(%)] (52)

and

C)=z1 =S =z = M), (53)

Substituting the last three equations into (7), we have

=20z M E)] + 27 + o ME) 2 ~ m ()]
% X

=2 M)z - M) (54)

:ZQ Infz"1p1(kR)] + P! +'§,[1 —m B M(E)]

which is equivalent to (45) since 7 is the logarithm of
the partition function.

In the discussion of Lee and Yang, a preliminary re-
duction was carried out by which the 1-vertices were
eliminated. We have deliberately bypassed this reduc-
tion in order to show the power of the dual tree method.
However, we can obtain Eq. (45) just as well by applying
the Corollary to Theorem 1 after the reduction has been
carried out.

The effect of the reduction is to replace Y, with 0 and
z with m{g) in evaluating the graphs. The sum of graphs
found in this way must be augmented by a term we shall
call 2, to obtain the logarithm of the partition function.
[, is the contribution of those original graphs containing
only 1-vertices. Thus

P, :iEanI(k)" =21n[1 —z¥,(R)]*
1k P (55)
=2 nlz/mB)]*

on account of (44).

In applying the Corollary to Theorem 1, we note that
/) (S) no longer receives the contribution of Eq. (50)
since Y, has been replaced with 0. Therefore (51) be-
comes

HES=p. (56)

Likewise, we must replace z with m(k) in (52) and
(53). However, § is still the same as M. The expression
for the logarithm of the partition function is now

Pyt =20 Inle/m ()] + 20 InlM (k) /m (0]
+P = M) m(R)? ~ M)

=23 In[M(R)/2]+ P’ +kZ[1 -mE);tME)]  (67)

which is the same as obtained before.

VIi. SUMMARY

It must be understood that we do not claim to have
obtained results unknown before, or even to have found
shorter proofs ab initio. The frequent references to
earlier treatments should make it clear that the proois
given here are not original.
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What is original is the explicit unification of diverse
theorems into a single statement which is proved once
and for all. The statement of Theorem 1 is aesthetically
simple and easily memorized. Once it has been
mastered and the flexibility of the dual tree concept is
understood, one may derive a variety of results with
great facility, each of which would otherwise require a
separate argument of some complexity. The applica-
tions include not only those exhibited in the preceding
four sections, but others known to the author, and
doubtless unknown theorems as well, pertaining to
graphical expansions yet to be studied.
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APPENDIX A

We shall first prove an auxiliary statement analogous
to Eq. (5), namely

ff 5(£)§(£):ZT) nywr (A1)

where »; is the number of lines in 7. By a similar
argument, slightly more complicated, we shall prove
Eq. (5). Once (Al) and (5) are established, Eq. (7)
follows immediately because of the relation

ng +ng =ny =1 (a2)
true of any dual tree.

[For completeness, we note that (A2) can be proved
by induction on », . If n, =0 it is obviously true. If n,
>0, remove an arbitrary line, and the tree will fall
into two parts, having »{Y and »%? lines, respectively,
where n{" +»{? +1=n,. Since (A2) can be assumed
true for each part the number of squares and circles
in the first part is »{?’ +1, and in the second is »{>
+1, so that for the whole tree ng +n, = (i +1) + (@
) =nfV 40 +2=n, +1. QED

This way of establishing Eq. (7) is the one used by
Bloch!! for the system treated in Sec. VI of this paper.

In order to prove Theorem 1, then, we need only
establish (A1), (5), (6). For this purpose we introduce
the rooted tvee, which is a dual tree in which one
square or circle (the root) has an extra line projecting
from it, the other end of which is unattached. The
value of a rooted tree is computed in the same way as
that of an ordinary dual tree, except that the £-variable
associated with the extra line is not summed over.
Hence the value is a function of one variable £.

Thus, if T is an unrooted dual tree containing a
square with three lines attached (call them i, i,, i,)
and T is the rooted tree formed from T by attaching
an extra line to this square, then Wr (g) is formed
from wy by replacing the factor S,(t, i & ) with
SaE, &1, 64,0 8-

Let T, represent any rooted tree having a square for
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root, and T, any one having a circle for root. Then we
assert that

S(8) =2 wy(8), C(&)=27 we (&) (A3)
Tg Tc

where S and C are defined by (4).

To prove this, let 7" be any dual tree, containing »n,
circles in all. Then §w,/5C, (&) is the sum of terms,
one for each circle of order 1, obtained by replacing the
corresponding factor C (&, in w, with 5(&,, £). (We
intend a Kronecker or Dirac § function according to the
meaning of [,.) But the result of this replacement is
precisely the function (n,)'w, (&) where Ty is the
rooted tree obtained by deleting the circle in question,
but leaving the line to which it was attached. The factor
(no)'=(n, -1)1/n,! arises from the fact that T has
only n, —1 circles.

In forming T, it was necessary to relabel the re-
maining circles; tet us specify that this was done so as
to preserve their order. Thus, if the deleted circle
bore the label 7, then all circles with labels <jin T
have the same labels in T, while all circles with
labels > j in T have those labels decreased by 1 in T,
so that the labeling in Ty is consecutive. Then, if we
add up all the terms of dw,/5C,{£), and sum over all
possible T, we shall form every possible T just n,
times, one for each value of j from 1 to n,. (By n,,
now, we mean one move than the number of circles in
Tg.) Thus

dw
EGC (TE)

which is equivalent to the first part of (A3). The second
part is proved similarly.

E nc 5) (A4)

We now prove (Al), Take any dual tree T, and any
line in it. If this line is cut in two, we have two rooted
trees T and T.. Say that T contains ng squares and ng
circles; T, n§ squares and »§ circles; and T, nS
squares and ng circles. Then it is manifest that

S1yCt nSing!
wp =508 -—‘fwrs(g)ch(i)‘
¢

5
ng! ne! (a5)

However, Ty and T, had to be relabeled so0 as to
make each one consecutive. Say that this was done so as
to preserve ordering within each set n§, »§, n8, 5.
Then, if we let T range over all dual trees and cut each
line of T in turn, we shall generate each pair (7’5, 7T,)
just (ng!, ’ns'nc‘) {(ns1/n31nS1) times, since that is the
number of ways to divide the »g square labels and the
n, circle labels each into subsets of the right size
(once this is done, T is uniquely determined by T and
T.). Hence the prefactors in (A5) cancel out and we
have

which in view of (A3) is equivalent to (Al).

The proof of (5) is very similar. Let us define an S, -
structure as a dual tree in which a square of order m
has been specially marked, and the lines attached to it
have been numbered from 1 to m. Let the value of an
S,,~structure be just that of the original tree. Since a
dual tree T, containing ng Squares of order m, can be
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converted into an S, -structure in n;_m! ways, we have
m

;nsz=§E nsmwT:Z:; nsmwrzsz/m! (A7)

where F, is the sum of the values of all §_-structures.

To find F,,, we note that each S, -structure consists
of m rooted trees T} (i=1++ m) whose extra lines are
inserted into the marked square. The value of the S -
structure is manifestly

N7} nmn(i)! m
Mins™ W™l [ g (go0e ) Bags(t)
ng! ne! Eyeont 1 c

1 n

(A8)
in an obvious notation. As in the previous arguments,
the prefactors are canceled by the number of §_-struc-
tures that reduce to the same m-tuple (T5+ -+ T%) upon
consecutive relabeling. No complication arises from
any topological identity among the various T/, since
they are distinguished from one another once for all by
the numbering of the m root-lines.

Aside from this relabeling factor, the sum over S_-
structures is equivalent to an independent summation
over all the T, and we have

F =] (A9)

$leoetm

S (g eee 5,")?"11(‘3(5,-)-

Substituting into (A7), and comparing with Eq. (1), we
have the first half of (5). The second half is proved in
the same way.

It remains only to prove (6). We define a rooted S,.-
structure as a rooted tree whose root is a square of
order m +1 (m, without the extra line) and in which the
m interior lines attached to the root have been num-
bered from 1 to m. Its value is that of the rooted tree.
It is then manifest, from (A3), that

S(&) =2 F1 (£)/m! (A10)
where F, is the sum of the values of all rooted S -~
structures. But an argument identical to the one that
led to (A9) gives
- m —

Fio)=/, . Spalt, g £ITCE). (a11)
Substituting (A11) into (A10), and replacing m by n—-1,
we have

0

S =2 -1

n=l $leeolpn

n=1_

_13,,(5, Eroee E) 1:' C(g,).

(a12)

On the other hand, if we evaluate §7(C)/5C(z) di-

rectly from Eq. (2) and set C=C, we obtain the right
side of (A12). This proves half of (6); the other half is
proved in the same way. The proof of Theorem 1 is now
complete.

APPENDIX B

Here we shall give an alternate proof of Theorem 1,
not using rooted trees but emphasizing the concept of
infinitesimal variation. With respect to Egs. (5) and
(6), this proof may be regarded as a rewording of the
one given in Appendix A, but with respect to Eq. (7) it
is essentially different. In Appendix A the proof of (7)
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depended on (5) and (Al) but not on (6). Here it will de-
pend on (6) but not directly on (5) and not at all on (Al),

Our proofs rest on two preliminary assertions:

o1 ) o1
_or S eeo L. Bl
écl(g) m’/g;..ogm m.l(g’gl gm)ﬁsm(§1'°' gm) (B1)
and similarly with S, C interchanged; and
ot m =
= m ! TIC{£,
oS,k gy e (B2)

and similarly with S, C interchanged.

It must be understood, since S, is restricted to be
symmetric in its arguments, that 57/6S, (£, 22 £ ) is
also to be symmetric in the £’s and satisfy

__ b6
85,k -0 £,)

for arbitrary symmetric infinitesimal functions 35 .

(B3)

or=f 88, (5e00 k)

Epeeet,,

To prove (Bl), suppose that C,(t) is incremented in-
finitesimally by 5 C,(£). Then the first-order increment
in w, is the sum of terms, each obtained by choosing a
circle of order 1 and replacing C, with 5C, for that
circle. Each such term could also be obtained from a
smaller tree 7', from which the circle in question and
its attached line have been deleted, by replacing
S, (£,°>> £, ) for the square at the other end of that line
with (ng)f,S, (&, &+ £,)6C,(£) where n, is the num-
ber of circles in T,

Now if one sums over all terms coming from all
choices of T, one obtains each T', with each square
singled out, just n, times [see the proof of (A3) in the
previous appendix| so that the factor n, cancels out and
one has

0T

=27
0T L

m é‘.(l-n{més(§1° )Sm“(g’glo.' Em)()cl(z)

(B4)

which yields (B1) upon elimination of the arbitrary in-~
crement 5C,.

To prove (B2), we note that S_ can have only sym-
metric increments and that any symmetric function can
be expressed as a linear combination of terms of the
form n;"f(gi). Therefore we need only consider an
increment

8S, (£, 0 zm):ﬁﬂs,.) (B5)

where f is infinitesimal.

The resulting increment in w; has a term for each
square of order m, consisting of a product of m factors.
Each factor is (apart from factorials) the value of a
tree obtained by severing one line from the square,
retaining everything on the other side of the line, and
attaching the factor f(£,) to the severed end.

In summing over T and over the choice of square,
the factorials cancel out and leave a factor 1/m!, as in
the proof of (5) in Appendix A. However, the sum over
each one-line factor is of the form [, f(£)P(¢) where P is
independent of m. It follows that
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ki y=mt i P (B6)

5sm(§1 e
and by setting m =1 and using (4), we have P=C, so
that (B2) follows.

with (B1) and (B2) established, we can easily prove
Theorem 1. First, substitute (B2} into {B1) and replace
m with n~ 1. This yields (A12) from which half of (6)
follows as in Appendix A. The other half is proved sim-
ilarly.

Next, we introduce the short notation S_(6/6S,) for
Tepet, Salbar = £,)6/6,(8,»+ » £,)]. Multiplying (B2) by
S,., summing over the £s and summing over m, we
have, with the use of (2),

28
On the other hand, if a tree T has n, squares then wy

is homogeneous of degree ng in Sy, S;, < , S0 that by
Euler’s theorem

ST

B7
o (B7)

=7(0).

55, 2% _pw,. (B8)

" m5S
Summing over T, and comparing with (B7), we have
half of Eq. (5); the other half is proved similarly.

Finally, let us define the quantity
0=3(@ 0@ - [ ST

and consider its variation when the S are changed
infinitesimally. This variation has two parts: one part
due to the variation of S and C, which depend on the S,
through Egs. (3) and (4), and the other part due to the
direct role of the S, in the definition of 7, Eq. (2). But
the first part is just

o7 oo+ [ 550 - [ 55T 5
S350+ [ 5755w~ [ 506 + C@es]
=0

(B10)

(B9)

on account of (6). In other words, (B9) is completely
stationary when regarded as a functional on C and S,
the S_ and C_ being fixed and Eq. (4) being disregarded
in the variation but satisfied at the stationary point.

It follows that for all m we have

(B11)

We sum over m, noting that 7(C) for fixed C is a linear
homogeneous functional on the S, , and obtain

(B12)

67
=2 S35

on account of (B7).

Now let all the S, be multiplied by the parameter u,
varying from 0 to 1. Let the resulting values of Egs.
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(3) and (B9) be called 7(x) and o{x). Then clearly

and {B12) becomes

dr{u) _do(u) (B13)
du ~ du
for all u.

If #=0 then all the S, vanish, and the only tree that
contributes to 7 is the one with a circle and no square:

T(O):CD. (B14)
Putting (B14) into (4), we find that S=0 and hence

0(0) =) (0)=C, (B15)
so that
7(0) = 0(0). (B16)

Integrating (B13) from 0 to 1, and adding (B16), we
have

(1) =0(1)

which is equivalent to Eq. (7) since putting =1 re-
stores the original values of the S .

(B17)

The proof of Theorem 1 is now complete. This
method of deriving Eq. (7) is essentially the same as
that given by Lee and Yang® for the quantum statistical
system treated in Sec. VI of this paper, and adapted by
Luttinger and Ward® for the field theoretic formulation.
A proof along these lines was given by Uhlenbeck and
Ford” for the Mayer cluster expansion dealt with in
Sec. V.

APPENDIX C

We shall prove the topological lemma stated in Sec.
VI.

Let i be a line in the family F. If F contains no other
line, the head of 7 is well connected to its tail, and the
lemma is satisfied. Otherwise, let j be another member
of F, When {7 and j are removed, the graph falls into
two parts A and B, one of which (say A) contains the
head of 7 (call it &;) and the tail of j (call it 7,).

Now %, and t, are connected through A and also out-
side of A. Hence if they are not well connected, they
can be separated by the removal of two lines just one
of which (call it §') lies in A, Now if we remove only
#'y hy and #, are connected neither through A (since j
is removed) nor outside of A (since 7 is removed).
Therefore j* is also related to ¢, and when ¢ and j” are
removed the graph falls into two parts one of which
(4’) is a subset of A and contains h; and ¢, . Replacing
j, A with j/, A" in the foregoing argument, we continue
until we arrive at a line ¢’ that belongs to F and whose
tail is well connected to the head of .

We may now replace 7 with ¢ in the foregoing and
develop a sequence ¢, ', i, <+ of members of F,
each having its head well connected with the tail of the
next. Eventually the sequence must repeat, and there-
fore it contains a circuit ., It remains only to prove
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that H contains all the members of F, and that its
ordering is unique.

Let p be 2 member of H, and ¢ be a line not in H.
The head of p is well connected to the tail of p’, which
follows p in H. Therefore this connection can be made
so that it does not pass through p or g. Likewise the
head of p’ can be connected to the tail of p"” without
passing through p or ¢. In this way we can find a con-
tinuous path from the head of p to its tail, passing
neither through p nor through ¢. But if p and q were
related, this would be impossible, since it permits
us to increment &, and not k,. Hence H contains all the
members of F.

The ordering in H is unique apart from cyclic per-
mutations. For if the head of p were well connected to
the tail of p!™, a cireuit H' could be formed by deleting
the lines p’,p",...,p{"" from H. Then, if p‘™=#p', H’
would not contain all the members of F, which has been
proved impossible.

*This research was supported in part by the U.S. Atomic
Energy Commission.

!Equivalently, we could drop the labels on the squares and
circles—thereby reducing the number of distinct trees—and
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calculate w(7) by dividing not by nglng! but by o(7}, the
symmetry number of the tree. For example, the twelve trees
in Fig. 1 would reduce to two, each having o=2, and their
total contribution to T would be the same as in our definition.
That method is more convenient for evaluating T, but the one
we choose is equivalent and seems better adapted to proving
theorems.

Our definitions allow trees consisting of a single square or
circle and having the value S, or C;. However, the theorem
loses no generality in practice if it is restricted to §3=C;=0,
which means that these two degenerate trees are omitted.

2T D. Lee and C.N. Yang, Phys. Rev. 117, 12 (1960), Ap-
pendix C.

3t is known that A, = (—1)17*2, but this fact Is not used either
here or in Ref. 2.

4G, Jana-Lasinio, Nuovo Cimento 34, 1790 (1964).

H. Ursell, Proc. Camb. Phil. Soc. 23, 685 (1927); J.E.
Mayer, J. Chem, Phys. 5, 67 (1937).

€J.E. Mayer and P.F. Ackermann, J, Chem. Phys. 5, 74
(1937), especially Eqs. (9)ff, (17), and Note in Proof; J. E.
Mayer and S.F., Harrison, J. Chem. Phys. 6, 87 (1938),
especially Appendix.

'G.E. Uhlenbeck and G, W, Ford, Studies in Statistical Me~

' chanics edited by DeBoer andUhlenbeck (Interscience, New

York, 1962), Vol. 1, pp. 123ff, Secs. III, 2, 3,
8T.D. Lee and C.N. Yang, Phys. Rev, 117, 22 (1960).
%J. M. Luttinger and J. Ward, Phys. Rev. 118, 1417 (1960).

15C, Bloch, Studies in Statistical Mechanrics edited by DeBoer

and Uhlenbeck (Interscience, New York, 1964), Vol. 3, pp.
7ff, and references cited therein.

113ee Ref. 10, Sec. 4.21. The connection with the Mayer

cluster expansion is indicated on p. 133,
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A new derivation of some fluctuation theorems in statistical

mechanics
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(Received 17 June 1974)

A simple derivation is given of some of the fluctuation theorems of statistical mechanics which relate
integrals of molecular distribution functions to thermodynamic properties. The derivation employs the
generating function for the probability P (n) that a domain w contains n particles. Various forms
of the generating function are derived, and each leads to a different form of the fluctuation

theorems.

. INTRODUCTION

In classical statistical mechanics there exist a num-
ber of well-known identities, commonly called fluctua-
tion theorems, which relate integrals of various molec-
ular distribution functions to the thermodynamic prop-
erties of the system. Derivations of these theorems
usually proceed by functional expansions (or the use of
testing functions), by graphical techniques or by com-
binatorial analysis. !

In this brief note, we give a new derivation of these
theorems which utilizes only the most elementary ideas
of probility theory, The derivation is based on the fact
that the probability P, (n) that a domain w of space con-
tains exactly » particles is simply expressed in terms
of the various distribution functions. The generating
function for the P,(») is then related to the grand par-
tition function of the system and the theorems follow by
differentiation.

Recently, Kac and Luttinger2 gave a derivation of an
expression which relates the pressure of a system to
the probability that a domain is empty, i.e., P,(0).
The present note essentially extends that work in that
the fluctuation theorems require the use of the P, (n)
for all =.

11. BASIC DERIVATION

Consider a system of particles described by a grand
canonical ensemble at temperature (kB)", absolute
activity z and confined to a domain @ of space. The
modified molecular distribution functions® of the system
are defined by

5,(X1,...,x1 l [Q]’ B;Z)E X E G(X r )

=4, ) e 6(X -, >,
i1, ig,-. ! 1 ! ‘1)
(1)

where the average is taken over the grand canonical
ensemble. Now let w be a subdomain of 2. Then, from
Eq. (1), we have immediately?

fw Br(xe,. .., % | 2)d%,. .. d°;=(n}), ()
where #n,, is the number of particles in w, Next, we let
P, (n) be the probability that exactly » particles are in

w and form the generating function of the P, (n). Thus,

o © o 1 i
Fl®=2 P m)= 3y W p
n=0 n=07=0 ll
_ s (Ing)t 1
= gg 7 :@0 n P, (n)
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X, | 2)dx,. .. dx,. ®3)

Xf ﬁl(xiy'--:
w

This gives the generating function in terms of the modi-
fied molecular distribution functions.

We now introduce the modified Ursell functions j, by
their relation to the modified molecular distribution
functions:

Bi(x; | 2)=F1(%y | 2); Bolxs, % | 2) = Fo(xp % | 2) + 71y | 2)
+F 1%, | 2); P3(Xy, Xy, X5 | 2) :js(xn Xy, X | 2)
+j2(x1,x2 l Z)j1(x3 l Z)**jz(xu X3 I Z)j1(xz l z)
+j2(X2,X3 l Z)j1(x1 ] z)
+Jix | ) % | 2)F1x | 2), ete. @

In general, p; is a sum of products of the form
FiyF4y- - -, such that the indices iy, 4,,... sum tol and
the [ coordlnates Xy,...,X; are distributed among the
}', in all possible ways. Smce however, we require
only the integral of g, for our derivation, we have

f 51(1(1,.
@ -

d 11 1 = 3 i]
) iy ‘?c.:ﬂ "1“2! . ﬁ w }I(XI rZ)dxi

(E kik=l)

~ 1
X 'lf F2(%e, %5 | 2) dry dx, .
21 J,

Using this in Eq. (8), the sum over [ yields the exponen-~
tial function and we thus obtain for the generating
function

(6)

. X l Z)d3x1,. ..d3x,

(5)

:
(&) =exp ;Z:/ (ng) f}’(x"" X | 2)dPxy ..

It is now only a brief step to the first fluctuation
theorem, since if we set w = then the Pg(n) are given
by

"Z ( Qiz
(2], 9 (7

where Z, and @ are the canonical and grand canonical
partition functions. Now forming the generating func-
tion for the Pq(n) as given by Eq. (7) and using Eq. (6),

Py(n) =
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we have

Q(tz)
Qz)

=exp (E JLQ_ f ],(xi,.. X | 2)dPxy . ) .

®)

Differentiating the logarithm of Eq, (8) with respect to
In{ and setting £=1, we obtain

3°1nQ(z)
a(lnz)s J }s(xh .

which is the desired theorem. For s=1 and 2, Eq. (9)
yields the mean number of particles and the compressi-
bility equation of state in the well-known way. For
$=3,..., higher derivatives of the compressibility are
expressed in terms of the integrals of higher molecular
distribution functions,

fal(8) =

X, | 2) ... dix, 9

A related theorem can be derived by using the form
of the generating function given by Eq. (3). Thus, dif-
ferentiating with respect to In§ and setting £=1, we
obtain

X, | 2)d%%;y ... d'x,. (10)

Q(a) 3(nz)* fn Pelrs

Iil. OTHER FORMS OF THE GENERATING FUNCTION

Two additional forms of the generating function and
the associated fluctuation theorems can be derived
by using the ordinary molecular distribution functions
and Ursell functions, For these, it is easiest to begin
in a canonical ensemble of N particles. The ordinary
molecular distribution functions are defined by®

N
com) (B -y o T,)
flveT., il=1

1y

¥
] (xly e

Here, the prime on the summation indicates that no two
of the indices ¢,,4,,... are equal. We now introduce the
characteristic function of the domain w by

, XEw
G, (%)= {0 Xe . (12)
We then find for the probability of n(< N) particles in w:
(— 1)'N1
(N)
PU(0)= <n -G (xf))> 2 l,(N 5
X <Gw(x1) v Gw(x,)>
¥
Z} f p:N)(xl,...,Xg)dsxj... d3x,
=1 w
(13a)
and
P =~ — (i G, &x) 11 (1-Gux)
“ nl(N=n)1 \i Jannl
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_zN) (= 1) N) 3 3
= —T Pz X, oo, x)d%y L. Ay

I=n ﬂ!(l—'n)!

» N).
(13b)

n=1,...

The generating function (still in the canonical ensemble)
is now

£ () = E &P () - 1y G A

1=1

XJ s (%, ..., X)) %, ... %%, (14)
w

We can now go over to a grand canonical ensemble by
multiplying Eq. (14) by P, (N) [as given by Eq. (7)] and
summing over N, Thus,

% (r_ 1\l
fw(‘g):]-‘*'g (_ng)_f p;(xi,...,xl\z)d3x1...de

(15)

Now the Ursell functions 7, are defined from the p,
in the same manner as the 7, are defined from the 3,.
Thus, using the same procedure as before, we have

g 1) f J-Z (xl’ sy
(18)

From these two forms of the generating function, two
fluctuation theorems are easily obtained by setting
w=Q, differentiating with respect to £ and setting £= 0,
Thus, from Eq. (15)

fw(&) exp X; \ 2) d3X1 e e d3x1> .

QZ(Z) BsaQ;(sz) = -/; p(X, ..., X | 2)d%, ... (13x3, a7
and from Eq. (16)
- an(Z) f FoEiyoun, X I 2)dixy ... d*x,. (18)

Thus, each of the four forms of the generating func-
tion [Egs. (3), (6), (15), and (16)] leads to a fluctuation
theorem.

As a final brief comment, we might add that two
expansions for the pressure of the system can be ob-
tained from Eqs, (15) and (16). For, by the usual pre-
scription, we have

Bp(z) = lim % InQ(z), (19)
Ve o
where V is the volume of . However, from Eq. (7) we
see
InQ(z) = — InPq(0) = — Info (£ = 0). 20)
Thus, we obtain
. - 1)
Bp(z)=—- lim 1 (———)f T, x| 2) gL P
Vew V gz I Q
(21)
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or

. 1
Bp(z)=- 1,1'12 7

© o 1)E
1n {1+IZEg——lll—)Lp,(xi,...,x,[z)d3x1...d3x,. (22)

Equation (20) relating the pressure to the probability
that the domain @ is empty has been derived recently
by Kac and Luttinger? in the canonical ensemble. The
result in the grand canonical ensemble is, as we see,
completely trivial, The resulting derivation of Egs. (21)
and (22), however, appears to be considerably simpler

than many of the alternative treatments found in the
literature.
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ISee, e.g., J.L. Lebowitz and J.K. Percus, J. Math. Phys,
4, 1495 (1963); S.A. Rice and P. Gray, The Statistical
Mechanics of Simple Liquids (Interscience, New York, 1965);
J.K. Percus in, The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J. L. Lebowitz (Benjamin, New
York, 1964); M. Green in, Lectures in Theoretical Physics
(Interscience, New York, 1960), Vol. 3.
M. Kac and J. M. Luttinger, J. Math, Phys. 14, 583 (1973).
3Definitions of the various distribution functions are given by
J.K. Percus, Ref. 1 or J.L. Lebowitz and J.K. Percus,
Ref. 1.

‘The dependence of 5, on £ and B is surpressed for notational
convenience.

The superscript (V) is used to denote functions in a canonical
ensemble of N particles, When no superscript is used, as in
Sec, II, the functions refer to a grand canonical ensemble.
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Gravitational and electromagnetic radiation in Kerr-Maxwell

spaces
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The class of Kerr-Maxwell spaces is defined. This class consists of regular electrovac spacetimes in
which a geodesic, diverging, shear-free principal null vector field of the Weyl tensor coincides with a
principal null vector field of the Maxwell tensor. It is shown that this class admits no
Petrov—Penrose type III or type N solutions. It is also shown that the most general nonradiative

solution is the Kerr-Newman metric.

1. INTRODUCTION

We have recently shown® that a class of solutions to
the real Maxwell equations exists which can be viewed
as arising from a monopole moving along a complex
world line in complex Minkowski space. These solu-
tions are called complexified Lienard—Wiechert solu-
tions (CLW) and are characterized geometrically by the
fact that the Maxwell tensor possesses a principal null
vector field (p.n.v.f.) which satisfies the following
conditions:

(i) The p.n.v.f. is the tangent field to a congruence
of null geodesics;

(ii) the p.n.v.f. has non-vanishing divergence;
(iii) the shear of the p.n.v.f. vanishes.

We have also shown® that the class of regular, alge-
braically special type II, twisting (Kerr-type?) metrics
in Einstein’s general theory of relativity is the natural
analog of the class of CLW solutions in that a p. n. v.f{,
of the Weyl tensor satisfies conditions (i)— (iii),

Because of the strong analogy between the CLW
Maxwell fields and the Kerr-type gravitational fields
it is only natural to unite the two and form the following
class of electrovac spacetimes.

Definition: A Kerr~Maxwell space is a regular elec-
trovac spacetime in which the Maxwell tensor possess-
es a p.n. v.f. satisfying conditions (i)— (iii).

By a corollary of the Goldberg—Sachs theorem® the
Weyl tensor is then algebraically special with a degen-
erate p.n.v.f. coincident with the p.n.v.f. of the
Maxwell tensor. If the p.n.v.f. of the Kerr—Maxwell
space satisfies a fourth condition in the real space that

(iv) the twist (or curl) of the p.n.v.f. vanishes, then
then one obtains the class of regular Robinson—Traut-
man—Maxwell electrovac solutions. *

In the next section we present a summary of the
Kerr—Maxwell metrics in the Newman— Penrose®
formalism and define the condition of regularity. In
Sec. 3 we show that the Kerr—Maxwell class possesses
no type III (or type N) solutions. In Sec. 4 we show that
with the exception of the Kerr-Newman® metric (the

Kerr, Reissner—Nordstrom, and Schwarzschild metrics

are also included, being special cases of the Kerr—
Newman metric) systems described by Kerr—Maxwell
solutions must be radiative.

The Kerr—Maxwell spaces can be viewed as repre-
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senting the gravitational and electromagnetic fields pro-
duced by a charged source moving along an arbitrary
complex timelike world line in a complex space,® How-
ever, all of the work in this paper will be done entirely
in the real space. Although the complexified Lienard—
Wiechert solutions to the Maxwell equations in complex
Minkowski space are referred to briefly in Sec. 2, this
is only for the purpose of providing additional physical
insight into the regularity condition, which is imposed
in the real space.

2. THE KERR-MAXWELL METRICS

In this section we present a brief review of the spin
coefficient formulation of the Kerr—Maxwell metrics.

In a four-dimensional Riemannian manifold with sig-
nature (+,—, ~, —) a null tetrad Z,,=(I,,n,, m,, w,) is
introduced composed of two real (I, n) and two complex
(m, m) null vectors satisfying

len=—=m-m=1, (2.1)

all other scalar products vanishing. Equation (2.1) im-
plies the completeness relation

=2 (uiyy =M1 (uM,,). (2.2)

From the tetrad one can define the Ricci rotation
coefficients

,}/abczzau . Vzbchv (2. 3)
and the spin coefficients

k=1,,,m"0, V=g, mt

p=1,,,m" ", po= -,

o=l mtm”, A= nuw;ﬁ“ﬁ{",

T=1,, ,m*n, ==y, im0, (2.4)

= 'lé(lu;vnumu - mu:umumu)y
B=1@,, n*m’ - Ny, mEm’),
y=3(,,m*n = m, ,,m" ),
€= é(lu. wnu lv —-m, wmulv) .

The tetrad components of the Weyl tensor are defined
by

Uy==C, el m"IPm’,
Uy == C, " WIm°,
— (2.5)
V== C, 1" 0P’
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Yy==C,,,m* n’¥n’,
U, =— C,,,m nmn’.
Similarly for the Maxwell tensor we have

¢, =F, I"m",

&, =1F, (*n" + m*m’), (2.6)
&,=F, ,m"n".

Directional derivatives have the form
Do =0ul", 80 =0un", (2.7

6p =¢,,m*, Bp=¢,,m".

The spin coefficient formalism then consists of four
sets of first order differential equations (equivalent to
the coupled vacuum Einstein—Maxwell equations) for the
four sets of variables: the spin coefficients, the Weyl
tensor components, the Maxwell tensor components and
the tetrad or metric components.

The formalism can be readily adapted to yield the
Kerr—Maxwell solutions by simply choosing the null
vector field I to be a p.n. v.f. of the Maxwell tensor
satisfying conditions (i)—(iii). Thus,

(F*Y +i*F*) [, I*
or, equivalently,

@0 = 0, (2. 8)
and, in terms of spin coefficients, conditions (i)— (iii)
become

(i) k=0,
(ii) p+p#0, (2.9
(iii) o=0.

These assumptions [(2. 8) and (2. 9)] in turn lead to the
result that I must be a degenerate p.n.v.f. of the Weyl
tensor satisfying

Cuvp [ulTJ rr= 0’
or, equivalently,

=¥, =0, (2.10)

We also introduce a null coordinate system x*
=(u, 7, £, ), associated with the null tetrad such that
¥ is an affine parameter along the null geodesics
(labelled by #, £, ) to which [ is tangent.

The four sets of equations may now be integrated
under the above assumptions. Because the details al-
ready appear elsewhere,’ we simply quote the results
here.

The tetrad components of the Weyl tensor have the
form

¥y =¥, =0, (2.11a)
T, =¥Jp® + 26085 0%, (2.11b)
Wy = Wip? + Wip® + ¥pt + 2B 5(D®,), (2.11¢)
V, = Vip +¥ip? + 35 p* + 3030t + LU oS
+RBP Y50 + W p* + W] pt + W8 p5), (2.119)
with
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¥=5,R+LR,
91 =B, 90 + L9 +3L¥),
¥2=3¥Y3,= +(Zz)7),
V=R,
W =00 + TH0 + 41w,
V=Bl + I + 5201

+ 4%,z +(Z2)],
V=8 v+ T¥2+6L 12

+6i [T,z + ()],
=8 ¥¥T = +(L2)],
V=T o)+ Lo +3LeY,
¥e=TF &} + Lo} +4Ld}

+2i23[3,Z +(L2)'],
¥l =F,8% + L2 +5L82 +4i8}[B,5 + (L)),
¥ =6i8%B,= +(Ix)"].

(2.12a)
(2.12p)
(2.12¢)
(2.12d)
(2.12¢)

(2.121)

(2.12¢)

(2.12n)
(2.12i)

(2.12)
(2. 12k)
(2.121)

The tetrad components of the Maxwell tensor are

$,=0,
& =9/ o,
®,=23p + 830" + 2} p’,
with
ol =T, + L&) + 2L},
2=2i8{[8,= + (Tz)"].
The spin coefficients become
K=€=m=0=T=x={(,
=— (r+iz)?,
a=4(8,logP, +2L)p,
=~ 3(B,10gPy) p,
v=4¥p% +£&]8] p?,
w=(8,N +LN) B+ $¥(p? +pp) + 2T} Be?,
v=N+¥p+i¥5p? + 393 p° + 230 5(2,),
with
L=-5,6/9,
2z =5,L +LL-B,L- LI,
N=T,logP, + I,
R=B N+IN +N?-2NB,logP,,
where
Py=1(1+¢%),
¢=0¢(4t, ).
The metric may be written in the form

ds?=2(ln ~ mm),

with
I=1,dx* =du- (L/2Py) dt - (L/2Py) dT,
n=n,dx"
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(2.13a)
(2.13b)
(2.13c)

(2.14a)
(2.14b)

(2.15a)
(2. 15b)
(2. 15¢)
(2.154)
(2. 15¢)
(2.151)
(2.15g)

(2.16a)
(2. 16b)
(2.16c)
(2.164)

(2.16¢)
(2. 16f)

(2.17)

(2.18a)
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=dr + (AP )Ly -i2) +i(5,Z + LT +2L5)]dg
+Q@PINL(r +i%) - i(B,=+ LT +2L8) df
+[1+4(6,L+LL +3,L+LL)

+ 480 +Y5) +kSJF] pB 11, dx*, (2.18b)
m=mydx* =~ (1/2P,p) dZ, {2.18¢c)
m=m,dx* =—(1/2P,p) d&. (2.184d)

Finally &}, @), and ¥) must satisfy the differential
equations

5,88+ L&)+ 2L 88 =0, (2. 192)
d)= 5,2y +Ld)+La}, (2. 19b)
B0y + LU+ 3100 = 2,003, (2. 20a)
B =508 + L + 2L - kd)EY, (2. 20b)
with
Im {\110_<6 +Li) (6 12\ (3 Z+zi)}:o
2 0 u 0 u 0 :
(2.21)

In all of the preceding results a dot above a quantity
denotes (3/8u) [for example, L=(3L/du)], 8, is the
operator edth (3)%® applied to the unit sphere and % is
related to the Newtonian gravitational constant G by
k=2G.

Before we can obtain the class of Kerr—Maxwell
metrics, the further condition of regularity must be
imposed. First we introduce the quantity X(¢, £, £) de-
fined implicitly from Eq. (2.16f) by

u=X(¢, ¢, %), (2.22)
Then we define the complex function V(¢, £, Z) by
V(e £, T =X"(9, £, D =9¢"u, £, T), (2.23)

where the prime denotes the partial derivative with
respect to ¢. Now, the regularity condition may be ex-
pressed in terms of V as follows:

(v} The function V{¢, £, T), defined by Eq. (2.23),
must be a smooth, bounded function on the sphere, hav-
ing no zeros in the real spacetime.

Now we are ready to give another definition of Kerr—
Maxwell spaces equivalent to the one given in Sec. 1.

Definition: The Kerr—Maxwell space is obtained as
follows: Choose one complex function & (u, ¢, E), such
that condition (v) is satisfied, and three complex func-
tions ®(u, £, T), ®u, £, T), and ¥(u, ¢, T), whichare
regular solutions to the differential equations (2.19)—
(2.21). Then the Weyl tensor, Maxwell tensor, and
metric are given by (2.11), (2.13), (2.17), and the
auxilliary equations given above.

The regularity condition (v) can be interpreted as
placing a physical restriction on the class of solutions,
so as to only include those representing gravitational
and electromagnetic radiation emanating from bounded
sources moving along timelike world lines. The possi-
bility that the world line in question may be complex is
also allowed in order to include sources possessing
intrinsic angular momentum. 110
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To get a better feeling for what the condition means,
let us consider the class of complexified Lienard—
Wiechert solutions! to the Maxwell equations. The class
of CLW fields consists of regular solutions to Egs.
(2.19) in complex Minkowski space such that condition
(v) is satisfied. Each CLW solution represents the
electromagnetic radiation field produced by an electric
monopole moving along an arbitrary complex “timelike”
world line £(¢). In this case the function X is directly
related to the world line by X(¢, £, Z) = £ (¢)1,. (¢, T).
The condition that the complex world line be “timelike”
has been provided by condition {v). For a real world
line this definition coincides with the usual one, i.e.,
for a veal world line, condition (v) = £ (¢)£(¢) > 0.

In the Robinson—Trautman— Maxwell limit to the
Kerr—Maxwell solutions (i.e., when the p.n.v.f. satis-
fies condition (iv) on the real space) condition (v) re-
duces to the regularity condition used by Derry,
Isaacson, and Winicour'! for the Robinson—Trautman
solutions.

It is clear from Eq. {2.16a) that one still has the
freedom in a Kerr—Maxwell space to choose a new
function ¢ equal to any analytic function of the old ¢,

6=G(0). (2. 24)

The Lorentz transformation freedom represented by

the fractional linear transformations on ¢
E=(at+b)/(ct+d), ad—bc+0, (2.25)

also remains at our disposal.

3. TYPE I {N) KERR-MAXWELL SPACES
In this section we prove the following theorem.

Theovem I: The most general Petrov—Penrose type
I (type N) Kerr—Maxwell space is flat empty space.

Pryoof: Type III Kerr—Maxwell spaces are charac-
terized in the spin coefficient formalism by

T, =0, (3.1)
From (2. 11b) we see that this implies that
d)=0="10], (3.2)

It is convenient to rewrite the surviving differential
equations (2. 19b) and (2. 20b) using the independent
variables ¢, ¢, T rather than u, ¢, £. The equations

become

(@) =o, (3.3)

(V23 R) = R2JDBIV2, (3.4)
where B} is 8, holding ¢ constant. The regularity con-
dition implies that the functions V, <I>§, and R have the

following expansion in spin-weighted spherical
harmonics®®:

4

V=2 a0 Yt D), (3, 50)
Py = if:z Z;}lb”"(m 1Y 1,8, ©), (3.5b)
R=3 3 c™0) ¥ inlt, D). (3.50)
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By using the properties of spin weighted functions
and the edth operator, ® it is possible to show the
following:

Given a function 7(¢, £, Z) expandable in spin s
sperhical harmonics,

© i -
M= ZH 2 15(0) Y 1nlE, T, (3.6)
1=isl m=a
the equation
3;n,=0 (3.7
has the regular solution
7,=0 (s<0), (3. 8a)
S —
= 22 M™(®) ¥snlE, &) (s=0). (3.8b)
mzag
Equation (3.7) can be rewritten as
a -
— 1+ s =0
a§ [nS( gg) ] ¢=const ’
which has the solution
n(1+¢T)s=F(¢, T), (3.9)

where F is an analytic function of . By (3.6) 1, is a
bounded function on the sphere. When s <0, the left-
hand side of (3.9) is also bounded on the sphere. The
only choice for F which satisfies this condition is zero
and we have (3.8a). When s > 0, nonvanishing bounded
solutions for 7n, of the form
2s

M= 24 A($)T/ (1 +£8)° (3.10)
are possible, and from the definition of the spin
weighted sperhical harmonics we find that (3. 10) is
equivalent to (3. 8b).

Applying these results to Egs. (3.3) and (3.4) and
using the fact from condition (v) that V #0, we see im-
mediately from (3. 3) that

=0, (3.11)

so that the electromagnetic field vanishes, and then
from (3. 4) that

5{R=0. (3.12)

Since ¥)=8,R+LR=75/R=0, we see from (2.11) and
(2.12) that the solutions must be type N. But R has a
spin weight — 2 so that (3. 12) has the solution

R=0, (3.13)

and we are left with flat empty space.

4. NONRADIATIVE SOLUTIONS

We have already shown' that the most general Kerr—
Maxwell solution for which R =0 (equivalent to the
vanishing of the Bondi news function) and ®J=0 is the
Kerr—Newman metric. ® In this section we obtain the
same result using the weaker condition Wgzéz 0 and
at the same time generalize a result of Derry,
Isaacson, and Winicour by proving the following
theorem.

Theorewm II: The most general Kerr—Maxwell solu-
tion having vanishing radiative O(r!) part of the

37 J. Math. Phys., Vol. 16, No. 1, January 1975

Riemann tensor and Maxwell tensor is the Kerr—
Newman metric. Thus, a Kerr—Maxwell solution is
either radiative or one of the following exact solutions:

(a) Kerr—Newman metric [p.n.v.f. [ satisfies con-
ditions (i)—(iii) and Maxwell field does not vanish],

(b) Kerr metric [/ satisfies conditions (i)—(iii),
Maxwell field vanishes],

(c) Reissner—Nordstrém metric {I satisfies condi-
tions (i)~(iv), Maxwell field does not vanish],

(d) Schwarzschild metric [ satisfies conditions (i)—
(iv), Maxwell field vanishes],

(e) empty flat space.

Pyoof: The condition that the radiative parts of the
Riemann and Maxwell tensors vanish is
VW=R=0, (4. 1a)
=0, (4. 1b)

We wish to find the most general regular solution to
Egs. (2.19) and (2. 20) such that (4. 1) holds. Once again
we change our independent variables fromu, £, € to

¢, £, T so that the equations have the form

Bi(dYv3 =0, (4. 22)
8=, (4. 2b)
(LI =0, (4.2¢)
'V =8(VE5,R), (4. 2d)

where, as earlier the prime denotes differentiation with
respect to ¢, 8;is B, holding ¢ constant and 5 R=5,R
since R=R(¢, &) only.

The condition B = 0 becomes
[(53FW)/V]I'=0
or
B[VEsi(VI/V)]=0. (4.3)

Since it has already been shown’ that the case ®J=R=0
leads to the Kerr—Newman metric, it will be sufficient
for us here to simply show that (4.2) and (4. 3) lead to
R=0,

Equation (4. 2a) can be written as
B =—-28)5;logV.

Differentiating with respect to ¢ and using (4. 2b), we
obtain the result that

Y55V /V) = 0.

Either

®)=0 (4.9
or

BHV'/V)=0. (4.5)

Suppose ®{=0. Equation (4.2¢) can be written as

5)W) =~ 395! logV (4.6)

and (4. 2d) as
Ty =VB2R+ 25, V5,R. 4.7
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Differentiating (4. 6) by ¢, operating on (4. 7) with 3/,
and equating the two results yields

8(5]1logV) 53R +6(5;logV)28, R + 3¥3[5{(V//W)/V
+383R+2R5,R=0, (4.8)

Differentiating (4. 8) with respect to ¢ and using (4.7)
yields

H'=0, (4.9
where
H= () [s5V/V]/V
=WV R{VEs{(V!/V)] V2, (4.10)

Operating on H with 5] and using (4. 2¢), (4.3), (4.9),
and (4. 10) then gives us

5iH=3,H=~12H8{logV, (4.11)
and finally after differentiating (4.11) by ¢ we obtain
—12HBYV/V)=0.

Either ¥J=0, which we reject since it leads to flat
space by Theorem I, or (4.5) must hold whether ®{ van-
ishes or not.

Equation (4. 5) has the regular solution
V'/V:f(¢)y

or
V=exp{ g(¢) +1(£,D)].
Under the freedom (2. 24)
V=V =V/G'(¢),
so that this can be used to put
V=V, D).
Equation (4.2¢) has the regular solution
v =M(¢)/V*, (4.14)
and substitution of this into (4.2d) using (4. 13) yields
M'/Ve=5,(Ve5R). (4.15)

(4.12)

(4.13)

Differentiating with respect to ¢ gives us

M"(¢)=0,
or
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M'(¢) = const. (4. 16)

The quantity V25, R has spin weight minus one so that
integration of (4.15) over the sphere®® yields

dtdf
VE1+g, T

The integral cannot vanish by condition (v) so that

M 0.

M'=0, (4.16")
and {4. 15) becomes

5,(V*5,R) =0,
for which the only regular solution is

R=0, (4.17)

and the theorem is proved.
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We consider algebraically special electrovac spacetimes in which a diverging, geodesic, shear-free (but
twisting) degenerate principal null direction of the Weyl tensor coincides with a principal null
direction of the Maxwell tensor. All stationary solutions of this class are solved exactly and found to
be of Petrov-Penrose type D, the most general regular stationary solution being the Kerr—Newmann

metric.

1. INTRODUCTION

In this paper we begin by considering the class of
electrovac spacetimes in which a principal null vector
field ! of the Maxwell tensor satisfies the following three
conditions:

(i) I is the tangent field to a congruence of null
geodesics,

(ii) ! has nonvanishing divergence,

(iii) the shear of [ vanishes.

By a corollary of the Goldberg—~Sachs theorem,* ! is co-
incident with a degenerate principal null vector field of
the Weyl tensor, which is then algebraically special in
the Petrov—Penrose® sense. As we have already called
regular solutions to this class Kerr —Maxwell (KM)
spaces, 2 we will refer to the general solutions as gen-
eral Kerr—Maxwell (GKM) spaces. In Sec. 2 the metric
for the class of GKM spaces is presented using the
Newman—Penrose® spin coefficient formalism.

A stationary spacetime is by definition one that admits
a global timelike Killing vector field, i.e., a vector
field #* that satisfies

k(u;u)zo, (11)

and

B4k, >0, (1.2)

everywhere. In Sec. 3 we use the spin coefficient for-
malism to find the stationary GKM spaces. We show that
they are all type D and that the most general stationary
KM solution is the Kerr—Newman metric. 5

2. THE GKM METRIC

In this section we present a brief review of the spin
coefficient formulation*® of the GKM metrics.

In a four-dimensional Riemmannian manifold with sig-
nature (+, -, —, =), we choose the principal null vector
I to be one member of a null tetrad consisting of two
real (I, #) and two complex (1, %) null vectors satisfying

(2.1

all other scalar products vanishing. Equation (2.1) im-
plies the completeness relation

len=-m-m=1,

gu = 2[1( wMy =My um,,)J.

The tetrad components of the Weyl tensor and Max-
well tensor are defined by

Yo=~
v, =

B V]P0
CL ol mlPme,

- Hap 10,,,0
C Ll lPme,
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V,==C,,,, m*n’1Pm°, (2.2)
R
Y, ==C,  mEnmn’,
and
&, =F, Fm",
&, = (1/2)F , (I + i m?), (2.3)

(bz = Fu.u»fh u"”’
respectively,

The GKM spaces are characterized by the fact that [
is tangent to a degenerate principal null direction of the
Weyl tensor coincident with a principal null direction of
the Maxwell tensor. In terms of tetrad components this

is equivalent to
V=¥ =%9,=0. (2.4)

The requirement that / satisfy conditions (i)—(iii) can
be expressed in terms of spin coefficients as

(i) x=0,
(ii) p+p=#0, (2.5)
(1ii) o=0.
Further simplifications, namely
E=g=7=x1=0, (2.6)

can be achieved by a proper choice of the remaining tet-
rad vectors (n, m, m) and by introducing an associated
null coordinate system («, 7, £, Z) such that » is an affine
parameter along the null geodesics to which [ is tan-
gent.® The remaining spin coefficients are given by

p= lu;um“ﬂz”,

o =(1/2)(1, 2w - m,, m*m"),

B=(1/2)(1,, n*m* =m,, m*m"),

y =(1/2)(1,, n*n" = m , , ,m*n’),

(2.7)
po=—n, mem,

Directional derivatives acting on a scalar S are de-
fined by

Ds=S§ 1*, AS=8, »*,
85=8, ,m", SSES;urTz“,
and obey the commutation relations

(AD - DA)S=(y +y)DS,
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(6D — D8)S=(a +B)DS - pbS,

(84 ~A8)S=—UDS ~ (@ +B)AS + (U ~—y +7)5S,

(86 - 88)S=(1 —p)DS+ (5 -p)AS - (& - B)8S
+ (@ =B)sS.

Finally, the metric for a GKM space can be written
in the form

(2.8)

ds?=2(Iln —mm) (2.9)
with

I=l,dx*=du - (L/2P,V)d¢ - (L/2P,V)dE, (2.10a)

n=n,dx*=dv -(1/2P,V){(w/p) dt

-(1/2P,V)(w/p) dt - UL, (2.10p)

m=m, dx* = —(1/2P,Vp)dt, (2.10c)

=i, dx* = - (1/2P,Vp) dt, (2.104)
where

p=—{(r+iZ)?, (2.11a)

2i5 =V (L/V)+LL - V& (L/V) - L1, (2.11b)

P =(1/2)(1 + £0), (2.11c)

and %, is the edth (5) operator® acting on the unit sphere.
The functions U and w satisfy the differential equations

DU=—{y +y), (2.12a)
Dw=pw = (a +8), (2.12b)
U -Aw=-v=(a+B8)U+(n -y +7)w, (2.12¢)
dw=bw= (1 =) +(p -p)U = (@ -B)w + (¢ - B)w.
(2.124d)

The spin coefficient formulation of our problem then
consists of the Eqgs. (2.12) together with additional equa-
tions involving the tetrad components of the Weyl (2. 2)
and Maxwell (2, 3) tensors and the spin coefficients (2.7).
The entire set of equations (which are completely equi-
valent to the coupled vacuum Einstein—Maxwell equa-
tions corresponding to the same problem) can be easily
obtained by simply applying the specilizations, (2.4)~—
(2.6) and (2. 10), to the general equations given in Ref.

4. Therefore, we present here only those Newman—
Penrose equations which we shall use later on:

Da =pa, (2.13a)
DB =p8, (2.13b)
Dy =¥, + kb, d,, (2.13c)
Dy =pu +¥,, (2.13d)
Dv=V, +kd,d,, (2.13e)
Ap=—p(n -y =) =¥, (2.13f)
AG =ty =pv+0fy —p) +By - ¥y, (2.13g)
by = AB=—=(a +By —Bly =y —p) + kd,D,, (2.13h)
DV, =3p¥, + 2k, &,p, (2.131)
DY, =2p¥,+ 8%, + kb, D&, (2.139)

where % is the gravitational constant,
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The form of the GKM metric remains unchanged un-
der the following coordinate-tetrate trnasformations:

|1

=u, r=r, E=L(),
l~:l, ﬁ:n, (2.14)
m =exp(inym =[(3E/3T)/ (a%/a8) 1 /2m,
and
u=G(u,t,8), r=G6, I=t,
1=G1, (2.15)

n=Gn, m=m,

where a dot denotes the partial derivative with respect
to u.

Under (2.15), V=GV, so that (2.15) is often used to
put

V=1, (2.16)

which is Bondi’ s coordinate condition.

3. STATIONARY SOLUTIONS

In this section we solve for the class of stationary
GKM metrics exactly. These solutions are all Petrov—
Penrose? type D and the most general regular one is the
Kerr—Newman metric.®

We now make the assumption that a well-defined time-
like Killing vector field k" exists everywhere, in partic-
ular, in the asymptotic region in which the affine param-
eter v becomes large.

By resolving k* on the tetrad

k* =Al*+ Bn* + Cm* + Cm*, (3.1)
a set of ten real equations can be written in terms of
spin coefficients involving the three functions A4, B, C,
which are equivalent to the Killing equations (1.1). (For
completeness, although they are never used here, the
Killing equations for a general spacetime are given in
spin coefficient form in the Appendix.)

These equations are obtained by substituting (3.1) into
(1.1), contracting with various combinations of tetrad
vectors and then substituting for the spin coefficients
(2.7) where ever they occur. For example, contraction
of (1.1) with !/, yields

DB=0, (3.2)
Thus,
B=B(u,t,?), (3.3)

where, in order that £* be everywhere well defined and
timelike, B, must be a regular function on the sphere
with no zeros, i.e., B, is expandable in spherical
harmonics

o 1
=

By=/3 22 b'™u),Y, (£, ).
=0 m==1
Under the freedom (2. 15), B0=GB0. Since B, is reg-
ular with no zeros we can use (2. 15) to put

B, =1, (3.4)

without affecting the possible regularity of any other
functions such as V, for instance,
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The condition (1.2) that the Killing vector field be
everywhere timelike (in particular, in the asymptotic
region) also leads to the results that

DC=0, (3.5)

and

K=V log P,V>0, (3.6)

the details of which are given in the Appendix.

The result (3.6) implies that the real function V{x, ¢, 3]
is, in fact, also a positive regular function on the
sphere with no zeros. Thus, we are free to impose
Bondi’ s coordinate condition (2.16) at anytime without
affecting the character of B,. To preserve the regularity
of V the transformation (2. 14) must now be restricted
to the fractional linear (Lorentz) transformation given
by

(2.14")

where a, b, ¢, d are complex constants such that
ad - bec=1.

Making use of (3.4) and (3.5), the remaining Killing
equations become

DA - (y +¥)=0, (3.7a)
pC+{& +8)=0, (3.70)
AA +(y +y)A+vC+pC =0, (8.7¢)
A —AC + (o +B)A+ (1 +y —¥)C -V =0, (3.7d)
5C + (@ —8)C =0, (3.7e)
5C+6C ~ (@ -B)C —-(a -B)C -(p+p)A

+ {1 +p)=0. (3.76)

After applying the operator D to (3.7d), subtracting
from this & applied to (3. 7a) and A applied to (3.7b), a
straightforward calculation involving the commutators
(2. 8) and the Eqs. (2.13) then yields the result

29,C=0. (3.8)
Thus,
C=0. (3.9)

For suppose C#0. Then ¥,=0 and we have a type III
solution. From (2. 13i) we see that &, =0 and from
(2.13c) that Dy =0. Applying the operator D[p3D?] to
Eq. (3.7c) then yields

(6C¥p/p%(p -p)=0, (3.10)

where Egs. (2.13e) and (2. 13j) have been used. Now p
#0 by condition (ii), so that either (p -~p)=0 or ¥,=0.
If (p -p)=0, we are dealing with a regular type III
Robinson—Trautman—Maxwell solution, the most gen-
eral one of which is flat empty space.®° In the Appendix
we show that a stationary solution with ¥,=¥, =0 must
also be flat and empty.

Hence, (3.9) must hold and the Egs. (3.7) are further
simplified to

A=(p+p)/(p+p),

(3.11a)
{(3.11b)
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DA =(y +7), (3.11c)
AA ==y +7)4, (3.114d)
3A=v, (3.11e)
For a GKM space®
(@ +B)=V(L/V) p.
Thus,
(L/V) =0. (3.12)

Incorporating (3.12) into other results from Ref, 6, we
find

y == (1/20(V/V) + (1/2)¥3p + k2% p?, (3.13)
and
p=[K+ v (LV/V?) + LB (V/ V) + LL(V/V) Jp
+(1/2)¥(p* + pp) + k)BIpp?, (3.14)

with K given by (3.6).

Equations (3.11b) and (3. 11c) together then yield the
results that

V=0 (3.15)
and

A=_U=K+Reylp + kdDp. (3.16)
From (3.11d) we obtain

A=_U=0, (3.17)

and, finally, by substituting (3. 11e) into (2. 12¢) and
using (2.12b), we find that

cb:O, (3.182a)
where
w==i( Z)p. (3. 18b)

Thus, the metric is independent of the coordinate u

and the Killing vector field is given simply by
k* = 9x*/du. (3.19)

The equations remaining to be solved at this stage®
are

5,89=0, (3.20a)
VA (93/V) + L&2=0, (3.20D)
5,00 =2k0%%0, (3.20c)
BRK=k|0Y V|2, (3.20d)
Im¥d= V™3 T +2KT, (3.20e)

where [from (3.16), (3.17), and (3.20e)] the fact that
¥=0=49?, (3.21)
has been used.

The regularity of V implies that 5 K is a spin weight®
minus one guantity and integration of (3.20d) over the
sphere yields

0=k/|d>g/V|2£i-%i£,
or °

#9=0, (3.22)
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which satisfies (3.20b) automatically.

Eqguations (3.20a) and (3. 20c) then have the general
solutions

®2 = E(Z) (3.23)
and

¥9 = M(Z), (3.24)
respectively.

Again using the regularity of V, the general solution
of {3.20d) becomes

K= V% S logP,V = positive const.

Thus, V is expandable in /=0, 1 spherical harmonics
only and the transformation (2. 14)’ can be used to put

V=1, (3.25}

After substituting for Z from (2. 11b), the last equa-

tion has the general solution!®
L=-Q/2ME)/ ¢ )+/ &)/ (1 +¢D). (3.26)

The class of stationary GKM metrics has been solved
exactly, the entire class being completely determined
by the three analytic functions £, M, and/ of {. The
Weyl tensor components ¥, and ¥, both vanish® so that
we have proved the following.

Theorem 1: Stationary GKM spaces are all of Petrov—
Penrose type D. The metric for this class of solutions
can be given locally in the form (2.9) and (2. 10), togeth-
er with (2,11), (3.16), (3.18b), (3.23), (3.24), (3.25),
and (3.26). The nonvanishing components of the Weyl
and Maxwell tensors are given by

¥, = M(E)p® + 2RE(R)E(D)pp?, (3.27)
and

&, = E(D)p?, (3.28)
respectively.

The most general regular solution of this type is the
Kerr —Newman metric. Hence, we have also proved

Theorem 2: The most general stationary KM solution
is the Kerr—Newman metric.

Finally, we have the following corollary to Theorem
1,

Covollary 1: A stationary vacuum spacetime is either
algebraically general (Petrov—Penrose type I) or alge-
braically special type D.

APPENDIX

In a general space, the tetrad components of the Kill-
ing vector (3. 1) satisfy the equations

DB =0, (a1)
DA+ AB-(y +¥)B+{z ~TC+ (7 -1C=0, (AZ)
DC -8B+ (@ +B)B+pC+0C+7B=0, (A3)
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AA+(y +¥)A+vC+vC =0, (A4)

AC =8A = (T+a +B)A = (u +y =y)C + B -AC =0, (A5)

5C + (0 =BYC +AB —-0A =0, (A8)

8C+6C ~ (& =B)C = (& =8)C = (p +p)A + (i + ) B =0.
(A7)

Equations (A3), {A5), and {A8) are complex so that the
set {A1)—(A7) consists of ten real equations completely
equivalent to Eqs. (1.1).

Using the results of Ref. 6, Eqgs. (A1)—(A3) can be
integrated immediately to yield

A=A, ~(V/ V¥ +Re¥% + k%3200, (48)
and

C=Cyr~V{L/VY =ixC,, (A9)

where A, and C, are independent of v and (2. 15) has been
used to put

By(u, £, &) =1. (A10)
The timelike condition (1. 2) becomes
Rk, =2(AB - CC)
=2l4, ~ (V/V)7 + Re¥l + k0S32pp = C Ty
+RelC(V(L/ VY +isC)r] =| V(L/V) +izC,|?]
>0, (A11)

from which we see immediately that C =0, or, equi-

valently, that
DC=0, (A12)

Substitution of (A8) and (A9) into (A7), again using the
resuits of Ref. 6, yields
V=0 (A13)
and
A=K+ Ll, (A14)
so that {A11) also gives us

K=V logP,V>0, (A15)

which is (3. 6).
Finally, if ¥,=¥,=0, then &,=¢,=0 and
\1’4:\1/395
where

¥0=RVZ,
But if C#0, then (A6) yields
R={2V)/V,
so that ¥{=0 and we have flat, empty space.
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Propagation of transients in a random medium
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The propagation of transient scalar waves in a three-dimensional random medium is considered. The
analysis is based on the smoothing method. An integro-differential equation for the coherent (or
average) wave is derived and solved for the case of a statistically homogeneous and isotropic medium
and a delta-function source. This yields the coherent Green’s function of the medium. It is found
that the waveform of the coherent wave depends generally on the distance from the source measured
in terms of a certain dimensionless parameter. Based on the magnitude of this parameter, three
propagation zones, called the near zone, the far zone, and the intermediate zone, are defined. In the
near zone the evolution of the waveform is determined primarily by attenuation of the high-frequency
components of the wave, whereas in the far zone it is determined mainly by dispersion of the
low-frequency components. The intermediate zone is a region of transition between the near and far
zones. The results show that, in general, the randomness of the medium causes a gradual smoothing

and broadening of the waveform, as well as a decrease in amplitude of the wave, with propagation
distance. In addition, the propagation speed of the wave is reduced. It is also found that an
oscillating tail appears on the waveform as the propagation distance increases.

INTRODUCTION

The subject of wave propagation in random media has
been studied extensively over the past two decades (see,
e.g., the review article by Frisch!). Most of the work
in this area has been concerned with time-harmonic
waves rather than with transient phenomena. Recently,
however, interest in transient waves has been stimulated
by a desire to understand how sonic booms propagate
through atmospheric turbulence, and a number of theo-
retical papers dealing with this phenomenon have ap-
peared. >~7 A review of current research on this topic
has been given by Pierce and Maglieri. ®

Our main objective here is to study the propagation of
transient waves in random media from a general view-
point. Consequently, we have adopted a more general
(but also more idealized) analytical model than those
which have been used previously to study sonic-boom
propagation. Our approach is based on the smoothing
method, which has been discussed by Frisch, ! This
leads to what is essentially a linear treatment; i. e.,
effects such as nonlinear steepening of the wave, consi-
dered in Refs. 4, 5, and 7, are neglected. Our analysis
does include multiple-scattering effects, however.

In Sec. I we formulate the problem in terms of an in-
tegro-differential equation for the coherent wave. In Sec,
II we solve this equation by transform methods for the
case in which the medium is statistically homogeneous
and isotropic and the source term is a space-time delta
function. This yields the coherent Green’s function of
the medium. The main result of Sec. II is given by Eq.
35, which is an integral expression for the Green’s func-
tion. In Secs. IIA and IIB we evaluate this expression
approximately for two propagation regions which we call
the near and far zones. In addition, in Sec. IIC we eval-
uate it numerically for the region which we call the in-
termediate zone. The results of the latter calculation
are presented in Figs. 1-5.

As noted in Seec. ITA, our near-zone results are sim-
ilar to those of Cole and Friedman.® However, our re-
sults for the intermediate and far zones do not appear to
have been obtained previously.
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I. FORMULATION OF THE PROBLEM

We wish to consider the propagation of transient scal-
ar waves in an unbounded, three-dimensional, random
medium. As our mathematical model of this phenomenon
we choose the scalar wave equation

(c™20% - V)u(x, £) = f(x, 1), (1)

where x= (x, x4y, x3), and the “acoustic speed” ¢(x, !) is
assumed to be a random function of space and time. The
problem we are concerned with can be formulated, gen-
erally, as follows: Given the (nonrandom) source function
f and some appropriate statistical properties of ¢, find
some specified statistical properties of #. Here we shall
be concerned with the ensemble average of #, denoted by
{uy, which is called the coherent wave,

We now proceed to get an equation for the coherent
wave, We begin by assuming that the random inhomo-
geneities of the medium are small; i, e., we write

cx,f)=co[l +ep(x, 1)}, (2)

where ¢ is the average acoustic speed (assumed con-
stant), and u(x, ¢) is a random function defined so that
() =0 and {u? =1. The parameter ¢ is a measure of the
deviation of ¢ from its average, and is assumed to be
small,

By substituting for ¢ from Eq. 2 we can write Eq. 1 in

the form
[L,+eLly +62LZ + O =f, (3)

where the operators L,, L, and L, are given by

@)
6)
{8)

Keller? has shown that the ensemble-averaged solution
of Eq. 3, i.e., the coherent wave, satisfies the equation

{Ly+ [y ~ (L LFLY ]+ O Ky = 1. (7)

(In deriving Eq. 7 it has been assumed that (Ly) =0,
which is the case here.) Thus, for our case the equation

LO 26528219 - V2s
Li == ZC(-)ZuaZt’
L, :3052512822.
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for the coherent wave is obtained by substituting Egs.
4—6 into Eq. 7 and noting that the inverse operator L51
can be written in the form

Lo (x, )= @) [+ oy (x+r1,t~cgr)dr. (8)

(Here, and henceforth, an integral sign without limits de-
notes an integral taken over all of three-dimensional
space. ) The result, after terms of order € are dropped,
is

(€208 = VAw(x, t) +€{3ciw (%, 1)

- ”-1064 f V-I[Rr‘r(r’ c(')ir)w”(x +r,t- 6517’)

1

— 2R (r,ciiP)w,y,(x+ 1, t = c5¥) + R(r, c5'7)

Xty (X + T, 8= c7'9) ] dr}=f(x, 1) (9)
The letter subscripts denote differentiation,

In deriving Eq. 9 we have set w={u). Also, we have
assumed that the medium is statistically homogeneous,
and we have introduced the correlation function

R(I‘, T) :<IJ'(X) t)ll(X‘F r, t— T))-

We now assume that the random fluctuations of the
medium are independent of time, (This is equivalent to
assuming that the characteristic time associated with the
wave is much less than that associated with the fluctua-
tions of the medium, In the case of waves propagating in
real media, this condition is generally satisfied. In par-
ticular, it is satisfied in the case of sonic-boom propa-
gation through atmospheric turbulence. ) Then u = u(x),
and Eq. 9 simplifies to

10)

(€222 = VOu(x, 1) + {3c iy, (x, 1)

~legt [ 7 IR( )y (x4 1, E = o) dr} = flx, ), {11)
where now
R(r) =(u®)ux+1). (12)

The procedure by which Eq. 9 is obtained from Eq. 1
is due essentially to Keller, ? and is referred to as the
smoothing method by Frisch, ! It has been used previous-
Iy to study the propagation of time-harmonic waves in
various types of random media. =

. THE COHERENT GREEN’'S FUNCTION

We now proceed to solve Eq. 11 when f(x, f) = 6(x)5(f).
This will yield the free-space coherent Green’s function
of the medium [i. e., if w(x,?) is the solution of Eq. 11
with f(x, #) = 6(x)5(¢), then the Green’ s function G is given
by G(x, t;x', ') =w(x—x',t~#')]. This function describes
the propagation of a spherical delta-function pulse.

We begin by introducing the Fourier time and space
transforms, defined by

Tf,(w) =f1(w) = [ expiwt)f; (t) dt, (13)

Sgy (k) = 24 (k) =f exp(- ik - xX)g,(x) dx, (14)

respectively, where fi(f) and g,(x) are any square-inte-
grable functions. The inverse transforms are given by
T (1) =£1(1) = @n)! [ exp(- iwt)f;(w) dw, (15)
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Sz,(x) = g1(x) = @7)° [ exp(ik- x)gy (k) dk. (16)
Applying the operator T to Eq. 11 yields
— (V2 + EDo(x, w) — €[3k30w (%, w)

+aikd [ exp(ikgr)R(r)w(x + 1, w)dr] = 5(x), am
where ky=w/c,. Operating on Eq, 17 with S gives

D(k, w)is(k, w) =1, (18)
where
Dk, w) =Fk* =~ k- &3k + 1k} [ 7 exp(ik )R (r)

x exp(ik - r)dr], (19)

We now assume that the medium is isotropic, so that
R(r)=R(»). Then we can carry out the angular integra-
tion in Eq. 19, after which we find that

D(k, w)=D{k,w)

k=i~ B3 okl | 0” expltk )R (7) sinkv dr]. (20)

Hence, from Eq. 18,

ik, w) = 20(k, ) = [Dk, )] 1)

The function @(x, w) is obtained by operating on Eq.
21 with S™! and carrying out the resulting angular inte-
gration in k space. The result, after some algebra, is

w(x, w) =w(, w) = (2rx)"! fow [D(k, w)) ke sinkx dk. (22)

We can evaluate the integral in Eq. 22 by means of con-
tour integration, after which the expression for
becomes

w(x, w) = (27x)"[Dy(ky, w) 1Ry exp(ik,x). (23)

Here D, is the derivative of D with respect to 2, and &,
is the root of the dispersion equation D(k,w ) =0 which
lies in the upper half of the complex %k plane, and which
has the property that 2y — k%, as ¢~ 0, To lowest order in
€, it is given by

ky=ko+(1/2)€" 3k, + 4kE [~ exp(k )R () sinkordr].  (24)

That 2, as given by Eq. 24, indeed has a positive imag-
inary part is easily proved using an analysis similar to
that of Keller (Ref. 9, p. 152). The same analysis shows
that |Rek;I>1kyl, and that the root near - % has a neg-
ative imaginary part.

In deriving Eq. 23 we have neglected all other zeros
of D(k,w) lying in the upper half-plane. The justification
for neglecting these zeros (if they exist) is that, as
shown in Appendix A, they have large imaginary parts
and hence correspond to rapidly-attenuating waves. Such
waves will be important only in a region near the source,
Since we are not interested in the behavior of the solu-
tion in this region, we disregard these waves.

We now rewrite Eq. 23 by inserting the formula for
ky given by Eq. 24 into the expression for D,(&, w) ob-
tained from Eq. 20. Upon neglecting higher-order terms
in €, we obtain

wx, w) =[1+22 (k)] (d7x) exp ik ), (25)
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where we have deﬁned
V(ky) =k fo'” exp(ik¥)rR(r) coskyr dr

-k fo“’ exp(ik )R (r) sinkr dr, (26)

Note that the quantity #(x, w) exp(—iwt), with % given
by Eq. 25, is just the coherent wavefield radiated by a
time-harmonic point source; i. e., it is the solution of
Eq. 11 when f(x, {) = 6(x) exp(- iw?). Since, as noted
above, Imk;> 0 and |Rek,| > |k,l, we see that this wave
decays exponentially with distance from the source, and
also that its phase speed is less than ¢;,. These proper-
ties of the coherent wave are similar to those found in
previous studies of plane, time-harmonic waves, %10

The solution of Eq. 11 can now be obtained by operat-
ing on Eq. 25 with 7!, This yields

w(x, t) =wlx, £) = Bri)t f_: [1+2¢% (k)]

xexplikw (1 +2€%) + 2ik x® (ko) = iw t] dw. 27
Here we have defined
& (ko) =k, J,” explikr)R(r) sinker dr, (28)

and we have substituted for 2, from Eq. 24.

We can write Eq. 27 in a more convenient form as
follows. We first note that

1+ 2620 (k) = exp[ 262 (k)] + O(e*). (29)

Next, after substituting Eq. 29 into Eq. 27, we introduce
K, a new integration variable, which is defined so that

Kk =ky(1 +3€). Upon dropping terms of order €! in the re-
sulting expression for w, we obtain

w(x,t)=c, (Brx)™ f_: explik(x = cxt)

+ 26 (k) +ikx® (k) ]} d, (30)

where

cx = (14368 c,. (31)

As a check on our results, we note that by setting
€=0in Eq. 30 we obtain the well-known Green’ s function
solution for the case of a uniform medium,

In order to simplify Eq. 30 further, we now assume
that x is so large that we can neglect the term ¥ (k) com-
pared to the term ikx®(x) in the square brackets in that
equation. In dimensionless terms this means that we
must have x/I>> 1, where [ is the correlation length of
R. Then Eq. 30 becomes
w(x, t)=c,(8nx)™ [ Zexpliky + 2’ kxd (k)] dk, (32)
where we have defined y =x —c 1.

We now write the integral of Eq. 32 in dimensionless
form. We begin by introducing the normalized correla-
tion function S(s), defined by

R(r)=S(/1). (33)
Next we define the length scale 6 by
5=e(lx)'/% (34)
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Then in terms of the integration variable p =«6, Eq. 32
becomes

wlx, t) =c,(87°6x) [Zexplinp - p*d(a'p)]ap,  (35)
where we have defined n=y/8,

a=e(x/I)/? (36)
and

$(9) = ["(1 - exp(2igs))S(s) ds. @7

Equation 35 shows that the waveform associated with
the Green’s function, expressed in terms of dimension-
less coordinates, is determined by the parameter «. De-
pending on the magnitude of this parameter, we can iden-
tify three propagation zones which we call the near zone,
the far zone, and the intermediate zone. They are dis-
cussed in detail below.

A. The near zone

The near zone is defined by the condition that o «<1.
Referring to Eq. 35 we see that, in this case, |a-lp| >1
over the entire range of integration, except for a small
interval near the origin which we shall neglect. Hence,
we can evaluate the integral of Eq. 35 approximately by
substituting for the function ¢ its asymptotic expansion
for large values of the argument, This is obtained by in-
tegrating by parts in Eq. 37, and can be written

d(q) = my+ (2ig)™ + 0(q7%), (38)
where
mnzfo”s"s(s)ds, n=0,1,2, -, (39)

Upon inserting Eq. 38 into Eq. 35 (after dropping the
term of order ¢~* in Eq. 38) and noting that the resulting
integral is tabulated, we obtain, after some
manipulation,

w(x, t) =c,Bmxd;) mym) /2 exp[— (x — ¢ )%/4m %],  (40)
where

5y = (1 +3€%)15, (41)
and

c;={1+28% ¢, (42)

Equation 40 describes the waveform associated with
the Green’s function in the near zone, It shows that,
near the wavefront, i.e., near x=cf, the waveform is
given approximately by a Gaussian curve. We see from
Egs. 34 and 41 that the waveform broadens in proportion
to the square root of the propagation distance, while the
amplitude of the wave decreases (in addition to the de-
crease due to spherical spreading) as the inverse square
root of the propagation distance. Equations 40 and 42
show that the wave propagates with a speed equal to ¢y,
and that ¢, is less than ¢, Thus, the propagation speed
of the wave is reduced by the randomness of the medium,

Replacing the function ¢ in Eq. 35 by the approximate
form given by Eq. 38 is equivalent to considering the ef-
fect of the randomness of the medium on only the high-
frequency components of the wave. This effect consists
of an attenuation which is proportional to the square of
the frequency, as well as a frequency-independent reduc-
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FIG. 1. The waveform associated with the Green’s function,
computed using Eq. 49, for the case @ =0,1. The function
W(t) is related to the Green’s function by Eq. 48. The
stretched coordinate ¢ is defined so that ¢ = 63'(x — ¢, £), where
8y and ¢, are given by Egs. 50 and 31. The wave is propagat-
ing from left to right.
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tion in propagation speed., Hence, in the near zone, the
effect of the randomness of the medium on transient
waves, insofar as the waveform is concerned, is essen-
tially that of a pseudoviscosity, with the waveform being
determined mainly by attenuation of the high-frequency
components of the wave,

Our near-zone solution (Eq. 40) is similar to one
which was obtained by Cole and Friedman (Ref. 6, p. 71,
Eq. 11) for the case of a plane wave propagating in a tur-
bulent medium. (Their solution is expressed in terms of
an error function since they considered a step-function,
rather than a delta-function, pulse). These authors ob-
tained their result by, in effect, solving the linearized
Burgers’ equation. Since it is well known that this equa-
tion governs (approximately) the propagation of small-
amplitude sound waves in a viscous fluid, '* their formu-
lation better illustrates the pseudoviscous character of
the medium noted above.

B. The far zone

The far zone is defined by the condition that ¢ > 1. In
this case |a™'p| <«<1 over that range of p which yields the
major contribution to the integral of Eq. 35. Hence we
can evaluate that integral approximately by substituting
for ¢ the first few terms of its power series expansion.
This is obtained by expanding the function exp(2igs) in
Eq. 37 in a power series and integrating term by term.
Upon dropping all but the first term of the expansion we
find that the integral of Eq. 35 can be evaluated in terms
of the Airy function. After some manipulation, the re-
sulting expression for w can be written

w(x, )=cx(41x5,)  Ai(¥) (43)
where Ai denotes the Airy function,
6y = (Be?m,12x)* /3, (44)

a7 J. Math. Phys., Val. 16, No. 1, January 1975

and £=253'y.

Equation 43 describes the waveform associated with
the Green’ s function in the far zone. We see that, near
the wavefront, i.e., near x =cxf, the waveform is given
approximately by an Airy function. Equations 43 and 44
show that the waveform broadens in proportion to the
cube root of the propagation distance, while the ampli-
tude of the wave decreases (in addition to the decrease
due to spherical spreading) as the inverse cube root of
the propagation distance. Note that the propagation speed
of the wave is equal to cx. This is slightly greater than
the propagation speed in the near zone. However, from
Eq. 31, cx is less than c,; hence, as in the near zone,
the propagation speed is reduced by the randomness of
the medium.

More detailed information regarding the waveform de-
fined by Eq. 43 can be obtained from any standard re-
ference work on the Airy function (see, e.g., Ref. 15).

Replacing the function ¢ in Eq. 35 by the first few
terms of its power-series expansion is equivalent to ne-
glecting all but the low-frequency components of the
wave, Moreover, in keeping only the first term of this
expansion we are, in effect, ignoring attenuation of the
low-frequency components, and considering only disper-
sion. Hence, in the far zone the high-frequency compo-
nents of the wave have effectively attenuated to zero,
with the waveform being determined primarily by dis-
persion of the low-frequency components.

C. The intermediate zone

The intermediate zone is defined by the condition that
a=1, In this case it is necessary to evaluate the integral
of Eq. 35 numerically. In order to do this, we must first
assume a particular form for the correlation function of
the medium. Here we shall assume a Gaussian correla-

tion function; i. e., we write
S(s) = exp(~ s?). (45)

By substituting Eq. 45 into Eq. 37 we find that the func-
tion ¢{q) for this case can be written

1.0

.

-2 r
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3

FIG. 2, Same as Fig. 1, except that ¢ =0. 5,
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FIG. 3. Same as Fig. 1, except that o =1.0,

o(q)=(a2/2/2)[1 - exp(- ¢*)] - iD(g), (46)
where D(q) is Dawson’ s integral:
D(q)=exp(~¢°) [ * exp(2?) dz. (47)

With the aid of Eq. 46, Eq. 35 can be put into the form

Arcbaxw(x, ) =W E), (48)
where
W) =72 [~ coslep + wp D(p/7)]

expl—3m' /2y p*(1 - exp(- p*/¥*)) ] dp, (49)
y =(3a?)'/3, and, in this case,

by = (3€4%x )1 /3, (50)

The function W(£) describes the waveform associated
with the Green’ s function in the intermediate zone.
Using Eqs. 47 and 49, we have made numerical calcula-
tions of W(£) for a range of £ near the wavefront (i. e.,
near £ =0), and for several values of . These results
are plotted in Figs. 1—5. The figures describe the tran-
sition of the wave profile from the near-zone to the far-
zone form as the wave propagates through the interme-
diate zone (i.e., as « increases). The most prominent
feature of this transition is the development of an oscil-
lating “tail” on the profile which becomes more pro-
nounced with propagation distance. This is the result of
dispersion of the low-frequency components of the wave
which, as we have seen, becomes increasingly impor-
tant in determining the wave profile as the wave propa-
gates into the far zone.
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APPENDIX A

We wish to show here that all the roots of the disper-
sion equation

D(k, w)=0 (A1)

which lie in the upper half of the complex % plane, and
which are bounded away from + %, as e~ 0 (i.e., all the
roots except k,) have the property that Imk— + = as

e— 0.

To see this, we assume that &= %(¢) is such a root.
By using the definition of D(k, w) given by Eq. 20, we

can write Eq. Al in the form
k2 - k3 =3[ 3 + 4k3k [ © explikr)R(7) sinky dr]. (A2)

Since the left-hand side of Eq. A2 is bounded away from

-2

-4 1 | 1 1 1 1 1 1 L 1 1 1 L ]

-t0 -8 -6 -4 -2 9] 2 a4

FIG. 5. Same as Fig. 1, except that o =10.0.
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zero as ¢~ 0, the right-hand side must be similarly
bounded. This requires that the second term in the
brackets in Eq. A2 be unbounded as ¢e— 0. This term,
however, is an entire function of k; hence we must have
{k]l—~ < as e~ 0. As a consequence, the integral of Eq.
A2 must be unbounded as ¢ ~ 0. But this is possible only
if Imk— = as e~ 0, as can be seen by writing the term
sin k7 in exponential form. Thus, the result is
established.
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Discrete state perturbation theory via Green's functions*

William Rubinson
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The exposition of stationary state perturbation theory via the Green’s function method in Goldberger
and Watson’s Collision Theory is reworked in a way that makes explicit its mathematical basis. 1t

is stressed that the theory consists of the construction of, and manipulations on, a mathematical
identity. The perturbation series fall out of the identity almost immediately. The logical status of the

method is commented on.

This note is a reworking of the version of stationary
state perturbation theory given in Sec. 8.1 of Goldber-
ger and Watson’ s book Collision Theory.' Readers of
that section may be pleased to learn how simple it can
be made. The account presented here involves only a few
simple manipulations and, I believe, makes the nature
of the mathematical argument more evident. Even peo-
ple who are constitutionally repelled by apparently un-
motivated mathematical procedures may be impressed
by the way this one deftly produces the sought-for per-
turbation series, as if by sleight-of-hand, out of only
the definition of a Green’ s function and a related mathe-
matical identity.

I. THE GREEN’S FUNCTION AND MATHEMATICAL
IDENTITIES RELATED TO IT

The notation used in the following is essentially Gold-
berger and Watson' s.

The operator Green’ s function G(E) for the Schroding-
er equation

Hix) =E,[\) (1.1)
is an operator function of a numerical variable E de-
fined in terms of the Hamiltonian H by

G(E)=1/(k - H). (1. 2)

For any eigenket [\) of H belonging to eigenvalue £,

GEY ) =1/ = E)] V) = G(E) V), (1.3)
which shows that for all E ¥ E, the eigenket |3) of H is
also an eigenket of G(E), belonging to eigenvalue G,(E)
=(E - E,)™. If we take E to be a complex variable, G,(E)
is an analytic function of E defined everywhere in the £
plane except at E=E,, where it has a singularity. If E,
is a discrete eigenvalue of H, the singularity is a sim-~
ple pole, so that

G(E)— >~ as E—~ E,. (1.4)
X X

If E, is a point of continuum of eigenvalues of H, the sin-
gularity is essential, i.e., G,(E) tends to no unique val-

ue as E—~ E,.

We treat here only the case of discrete E,, so that we
can appeal to {I.4). In addition we will assume that E, is
nondegenerate, It should be remarked that the equations
deduced below without appeal to (I.4) are valid for con-
tinuum E, and so can be used to treat perturbations of a
continuum.
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Let la) be any ket whatever that is expandable in eigen-
kets of H. Then lcf. (1. 3)]

G(E)| a>=Z‘/|)\—’>—<7£-’I—a>

E-E,

5 lem + (E—E)Z-‘%}E'—‘”) (©.5)
Define

F(E)|a)=G(E)|a)/(a| G(E)|a) . (1.6)
Then, in view of (I.5),

FE)| &)= (I)A]/[a|a)|?)|a) + O(E - E)), (I.7)
which, in the limit as E—~ E,, gives

FEY|ay=(00]/ | ]alDa]D)]@), (1.8)

showing, since |a) is arbitrary, that F(E,) is propor-
tional to IA)(\ |, the operator that projects from the
state space of H onto the eigenstate {x). Note that this
is basically a mathematical triviality; it is the result,
essentially, of taking | \){l/{E — E,) plus a function of E
that is nonsingular at E=~ E,, multiplying this sum by
const x(E — E,), and then setting E=F,,

Next, from (I.2) we have the operator identity

(E - H)G(E) =1 1.9)

which, multiplied by |a)/{a| G(E)|a) gives the identity
lef. (1.6)]

(E - H)F(E)|ay=11/G,(B)]|a), (1. 10)
where we have written
G,(E) = {(a|G(E)|a), (1.11)

Inspection of the expression for {(a|G{E)|a) from (I,5)
shows that

lim G,(E) =, (1.12)
E~E,

Therefore, as E— E, the identity (I. 10) reduces to
(E,-H) F(E))|a)=0, (I.13)

showing that F(E,)|a) is an (unnormalized) eigenket of
H belonging to eigenvalue E,. This is another trivial
mathematical truth, in view of (I.1) and (I.8).

Note well that (I. 10) is an identity. It holds for all
values of E, including £,, for all kets |a) that are ex-
pandable in eigenkets of H, and for all analytic functions
G,(E) that have a simple pole at E=E,, One would ex-
pect, therefore, that nothing but further mathematical
trivialities could be deduced from it. Remarkably
enough, it can serve as the basis for a rapid and easy
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deduction of formal perturbation series for the eigen-
value E, and the eigenket I\) of H.

Il. DEDUCTION OF PERTURBATION SERIES FOR
E\ AND | })

This can be accomplished by specializing the general
ket la) of Sec I to be an eigenket, belonging to eigenval-
ue €, of the Hamiltonian K of an auxiliary Schr&dinger
equation

Kla)=¢,|a).
The Hamiltonians H and K differ by an operator V:
H=K+YV.

(I1.1)

(I1.2)

K is completely arbitrary, except that at least one of

its eigenkets |a) must be such that (. |a)+#0, It is idle to
insert at this point the customary remarks about V being
sufficiently restricted to insure convergence of the per-
turbation series that ensue, because no appeal is made
to such restrictions in the course of deducing the series.
See the remarks in Sec. IV below,

Insertion of (II.2) into the identity (I.10) gives the
key identity

(E - K = V)F(E)|a)=[1/G,(E)}|a). (11. 3)

Here the representative of the ket F(E)|qa) in the repre-
sentation with K diagonal is [cf. (I.6) and (I. 11)]

(@' | F(E)|a)=(a’| G(E)|a)/ G, (E). (I 4)

In particular, the diagonal element is, in view of (I.11),
(a| F(E)|a)=1, (11. 5)

identically, a fact that will be of great service.

Our goal, formal perturbation series for the eigen-
value E, and the eigenket |x) of H, is now rapidly at-
tained from the key identity (II. 3) with the help of the
identity (II.5) and the property (I.12).

First note that by (I.12), at E=E, Eq. (II. 3) reduces
to

(E, ~K - V)F(E,)|a)=0, (11.6)

showing [cf. (I.13) and the remarks that follow it] that
F(E,)!a) is an (unnormalized) eigenket of H belonging
to eigenvalue E,., Expressed as a perturbation series
and normalized in the way described later, it is the
sought-for eigenket solution of (I.1).

Next, multiply (II.3) by (a| to get, noting (II. 1) and
(11.5),

E—¢ —{(a| VF(E)|a)=1/G,(E),

and substitute this expression for 1/G,(E) back into
(I1. 3) to get

(E -K-V)F(E)|a)=(E ~¢,)|a) - |a)a| VF(E)|a),
(1. 8)

(1. 7)

which can be written as
(E ~K)F(E)|a)=(E - K)|a) + (1 = | a)a|)VF(E)|a).
(I1.9)
Note that this form is valid only when used with ket | a).
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From (II.9) we have F(E) expressed in terms of known
operators as

F(E)=1+[1/(E -K)](1 - |aXa|)VF(E). (I1. 10)
This can be expanded in an infinite series by iteration,
starting with the zeroth-order approximation F(E)=1.
The result, which is immediate, is :

F(E)= 1+L[ K(1-|a><a|)v] (1. 11)

where the bracketed expression to the nth power means

[z a-lowhv] [

With Eqs. (II.7) and (II. 11) we have essentially
reached our goal of a perturbation series for the com-
putation of the eigenvalues E, of H, The explicit series,
given as Eq. (II.16) below, follows immediately from
the fact that, by {I.12), at E=E, Eq. (II.7) reduces to

n times.

(1 - |a)<a|)V]

E,=¢,+(a|VF(E,|a), (I1. 12)
the right side of which is now completely known, €, and

| ) being known as solutions of (II,1), V being known
from (II.2), and {al VF(E,}| a) being known from (II, 11)
as the diagonal matrix element of

VF(E)=V+V grer (1 = |aa| IV

+V ’a)(al)V (1—|a><a|)V+-«o

E iK -
A
(I1. 13)

namely, expanded in the eigenkets of K [and recognizing
that {a’1 (1 - la)al)=(a’I (1 =5,.,)],
(a’VF(El)|a> (a|Via>+ (a|V[a’>

X

'<a’[VIa>+“-. (IL. 14)

Ex—c

Equation (II. 12) with Eq. (II. 14) is the sought-for series
for E,. It can be evaluated by successive approxima-
tions, as follows.

Introduce the abbreviation

R,(E)={(a|VF(E)|a). (I1. 15)
Then, by (II.12) and (II. 14),
E, =€ +R(E)=¢ +(a\V]a>+Z_, K%”%M

+LI 2_1 <a|V|a,><a lVla">(a"|V|a> (11016)

a'#aa® #a (E —6 )(E —€gn
Denote the vth approximation value of E, by E;"). As the
zeroth approximation take E{ =¢_which, inserted into

(I1. 16) gives the first-approximation value

2
E® ¢ +R(c) =€, +<ayV|a>+2J'<L€‘%“—' ,

(I1.17)
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which is just the expression given by Rayleigh—
Schrédinger perturbation theory. Substitution of E®*’ for
E, in the rightmost side of (II.16) gives

E® =€, +R(EX)

etc., the vth approximation value being

EW =e¢ + R (EVY)Y, (I1.18)
This completes our deduction of E,. The problem of
deducing the corresponding eigenket is already essen-
tially solved. For, as remarked in connection with Eq.
(I1.6), all that is required is to normalize F(E,)|a). Let
1/C be the normalization constant. Then, by Eq. (II.11)

)= F(E)| o)

:% Qa)+2 ﬁﬂl'_l_K_LiZ|al>+“°> (IL. 19)
a’fa a’

A

with C computed from (F denotes the Hermitian conju-
gate of F)

=t FEFE) =142 KELO oo .20

using the value of E, from the preceding perturbation
calculation.

{1i. DEDUCTION OF AN ALTERNATIVE FORM OF
PERTURBATION SERIES

An alternative form of perturbation series can be ob-
tained from our general equations, as follows. Define
5E by

E=¢ +08E (I, 1)
and insert this expression for E into (II.9) to get

(€, = K+ 8 EVF(E)| @) - |a)]=(1 = |a)a| ) VF(E)|a),
which, in view of [ef. (IL.5)],

F(EY|a) = |a)=(1 = |a)a| ) F(E)|a),
can be written

(¢, = KLF(E) -1}|@)=(1 = | a)a| )V = 6E)F(E) | a).
Consequently,

F(E)=1+{1/(¢, - K)(1 = |@){a|(V =8 E)F(E). (III.2)

Expansion of expression (III.2) in an infinite series by
iteration gives [compare (II. 11)]

=, 1 n
F(E)=1+22 [;-—Ku_ |a><a1)(v—5E)] (IT. 3)
n=l .
and, therefore, as in the transition from (II.13) to
(I1.14) (and taking account of the fact that (¢’|6E|a)
=0, " 6E),

R(E)={a| VF(E) | @) = a| V] ay + &3 L2 V1aO 1"
*a

a € —Ga'

ZsED [{alV]ah1?
a’fa (Ea -Ea')z
5 alViaa’lVia'a" | Vla)
(€, —€, e, =€)

(I11.4)

—
+ Z/
a’ta a"a

52 J. Math. Phys., Vol. 16, No. 1, January 1975

Now note that for the case E=E, we have from (III. 1),

(I1. 15), and (IL.12) that
R (E,)=E, ¢, =5E, (I0. 5)

which, inserted into (III.4), gives the sought-for second
form of perturbation series as

E =¢, +((1| V|(z>+z M
a'fa Crz—ea'

— alViani?
_(EA—Ea)aL';aw_;_...

We remark that the expression (III. 6) is simply the
Taylor expansion of the series (II. 16) about the value
€., for

E)« - 6a :Ra(E)\) :Ra(ea + Ek - Ea)

(IIL. 6)

=R, (,) + R NE, =€) + 3R (ENE, =€) ++++,
and R,,'(E,,)=[dRa(Ex)/dEl]El=ea, as evaluated from the se-
ries (1. 16), is identical with the coefficient of E, ~¢_ in
(I11. 6).

IV. COMMENTS ON THE GREEN’'S FUNCTION
METHOD

From the above account the essence of the Green’s
function method can be seen to consist of the following:

1. Construction of the operator identity (E - H)G(E)
=1, observation that for any normalized state what-
ever, lx), its mean value is necessarily {x | (E
- H)G(E)Iy)=1, and further observation that division of
this numerical identity by any one function f(E) of a cer-
tain broad class of analytic functions gives

& (E = H)G(E) Ix)//(E) =1/f(E),

a trivial mathematical truth, holding for all values of £,
all normalized kets |y), and all functions f(E) in the
given class.

a.1)

2. Recognition of the fact that if |y, is restricted to be
an eigenket |a) of any arbitrary Hermitian operator K
that has a complete set of eigenkets, and if, simulta-
neously, f(E) is restricted to be G (E)={(aiG(E)la), and
if, further, V is defined by H=K+V, then the trivial
identity (IV.1) reduces to {(¢| times the key identity
(IL. 3) from which the perturbation series follow almost
immediately.

This analysis makes it clear that the method by which
the key identity was obtained can provide no help n as-
certaining the applicability of the result in any practical
problem. The method provides formal perturbation se-
ries; the question of their applicability is a completely
independent one (essentially untouched in our exposition),
The question can be stated as: Given a Schrddinger equa-
tion with Hamiltonian H, what K’s can be used to effect
a solution?

At first sight it is puzzling that something as nontri-
vial as perturbation series can be generated from an
identity, a feat transcending any powers that inhere in
an identity. The power for the feat comes, not from the
identity, but from the Hilbert space of a Hamiltonian &
into which the identity is inserted. The role played here
by the identity is more or less like the role played with
such great effect, in certain arguments in mathematics,
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by the trick of multiplying by a complicated form of the
number 1; e.g., in the theory of the I'-function a multi-
plication by expl$,(1/n - 1/7)] is used in arriving at
Weierstrass’ expression for I'(z).

In the theory of the I'-function it is advantageous to
take Weierstrass’ expression as the definition of T'(z).
One must then ascertain the set of 2z’ s for which the de-
finition is meaningful [simple inspection suffices.for this
in the case of I'(z)]. Similarly, in the present theory it
would be logically advantageous to use the expression
for F(E)|a) given in Eq. (II.9) to define the sought-for
eigenket 1\) of H by

) =lim F(E)la).
E-E,

(Iv.2)

Analogously to the case of the T" function, one would then
have to ascertain the set of K’ s, or, alternatively, the
set of V=H - K, for which the definition is meaningful.
In addition to its logical advantages such a procedure
has a psychological one, namely, it makes it perfectly
clear that the Green’ s function method brings no new
content into perturbation theory.

We remark that all the equations in this note, except
those obtained by setting E=E,, are valid for continuum
states. They are the basis for the treatment of conti-
nuum state perturbation theory in Sec. 8.2 of Goldber-
ger and Watson’ s book. Consequently, the important ex-
pressions obtained there, too, are the results of mani-
pulation of identities. Some of the manipulations are
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very unobvious, but they are nonetheless manipulations
of identities,

The problem of the conditions on ¥V =H - K needed to
insure meaningful results in continuum state perturba-
tion theory has been studied by the mathematicians. A
set of such conditions is given in a book by Friedrichs.?

Note added in proof: For the deduction of discrete
state perturbation series the limit process in (IV.2) and
the Green’s function machinery that suggested it are
superfluous. The series can be derived with a minimum
of work in the following way. Let F(El) be an unknown
operator defined by

[V =(a|F(E)| @)

which, note, entails (a|F(E,)|a)=1, Insertion of this
expression for |1} into (E, - K- V)|x)=0 gives (II. 6)
which, left-multiplied by {(al gives (II. 12), and left-
multiplied by 1 - laXal gives (IL. 9) with E, in place of
E. The remainder of the derivation follows unchanged.

*Work performed under the auspices of the U.S. Atomic En-
ergy Commission.

IMarvin L. Goldberger and Kenneth M. Watson, Collision
Theory (Wiley, New York, 1964), p. 425.

IKurt O. Friedrichs, Pertuvbation of Spectra in Hilbert
Space (Am, Math. Soc., Providence, R.I., 1965).
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An exact determination of the gravitational potentials g;;
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Under a certain asymmetry assumption, the gravitational potentials g; are determined up to a
conformal factor from the field R,-j’k. This constitutes a partial solution to Einstein’s equations in the
general case. Moreover, the solutions are simple in that the g; are expressed as polynomial functions

of the R

1. INTRODUCTION

Since Einstein first proposed the general theory, a
major task has been to find the solutions to his field
equations. These equations are second order nonlinear
partial differential equations in several unknowns and as
such have been next to impossible to solve, except in
special cases.

In this work we will give a totally different emphasis
to the field equations. We have determined an exact so~
lution for the potentials g,, (within a conformal factor)
in terms of the gravitational field R!,, in very general
circumstances. The condition we need on the metric is
that there is not too much symmetry. This changes the
emphasis in Einstein’s equations to that of finding the
gravitational field given the energy momentum tensor.

2. THE SOLUTION

We first define the conditions we need on the R}, to
get our solution. We assume that R}, is the Riemann
tensor of some unknown pseudometric g;;. We will then
find the g;,. In other words, we do not show existence
of a solution, we just show how to obtain the solution if
it exists.

Definition 1: Let V be the vector space generated by
the following set:

(R (v,w)|v,we T (M},

where R is the Riemann tensor of some pseudometric.
R is called fotal at m if

dimV,_ =n(n-1)/2, n=dimM,

R veing total for every m says two things. It says that

R does not collapse at any point, that is, that V is the
lie algebra of the holonomy group. Secondly, it says that
there are no strong symmetries—no totally geodesic
submanifolds; that is, it says that the holonomy group
must be the whole Lorentz group. Most space~times
satisfy both these criteria.

Now we proceed to find our solutions. Using the fact
that R;; ,,=~-R;; ,, we have
gll'Ri"j k:—gkl’R:IJ 1

which are constraints on the g;; in terms of the R;, ,.
The following theorem says that these equations com-
pletely determine the g;; up to a conformal factor.

Theorem 1: Suppose R is total at m. Then g is deter-
mined to within a conformal factor by
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&R

at the point m,

+g,,,,R =0 (1)

IJk

Proof: By a theorem of Ambrose and Singer! we have
that the holonomy group of a connection has its Lie al-
gebra spanned by elements of the form 77! R, (v, w)7,
where 7 is parallel transport along an arbitrary path in
M. So

V,.C holonomy Lie algebra
C Lorentz Lie algebra, and
dim(V,) =dim (Lorentz Lie algebra).
Thus we know V_ is the Lie algebra of the Lorentz
group. Also g is specified to within a conformal factor
by

LgL*=g, (2)

where L is allowed to be any Lorentz transformation.
So

Lg=g(L™)". (3)

Now let L be replaced by a one parameter subgroup L(f),
and, by taking derivatives at {=0, we find the following
relationship in the Lie algebra of the Lorentz group:

dL(?)

Tg=-gT", whe T=———
§=-& re at |, ()

Since L in (2) only has to be taken from the identity com-
ponent of the Lorentz group, (4) will imply (3) for all the
needed transformations. We find that (1) is nothing more
than

R,.g..=-g..(R,.),
where the dots stand for the matrix indices, ¢ and j being

fixed. Thus Eq. (1) implies Eq. (4) for all 7 in the lie
algebra of the Lorentz group, and we are finished.?

We proceed to give the exact solution, Now that we
know that (1) determines the solution we need only solve
(1). This problem is more notational than anything else.
Let x;;, 1< <j<n, be n(n+ 1)/2 independent vectors in
a n{n+1)/2 dim vector space. Let x,;=x,; if i>j. Define

vij,k,l:xtl’Rli;,k-’_Xkl’R:'j,l
Now relable v, , , so that they are indexed by one index
a which goes from 1 to (n ~1)n®+ 1. Define v, to be x;
for @ ranging between (n —1)n3+1 and (2 - l)n3 +(n+1)n/2,
We now have all the vectors defined that we need, We
need only define the inner product in the space to be able
to begin. The inner product ( , ) is defined by the rule
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(Xi 50 Xizjz) =040 4y
Now we will give the solution using the Gramm Schmidt
method, since our solution will be a vector which is
orthogonal to all the v;; , ;. We added the extra v, to get
the one more vector we needed to complete the process.
We define

- -
We=Vqy -2y (va’ wﬂ)wﬂ’
Ka

where w,=o,/(®,, ®,)'’?, and also define

5, (1)
vt w, {a (n=1)n%/2
a=a+l b=a+n(n+1)/2.

We observe only one w, will not be zero for a > a.

Thus the above sum will be equal to the vector which
will be orthogonal to all the v, B <a, and we have

(w,%,,)=rg;;, X a conformal factor,

Although w will contain a lot of redundancy, a lot of
terms which turn out to be zero, our construction has
the following advantage. Given a particular dimension
for our space~—time (say 4), one can, using the above
formula, write out the g;; explicitly as functions of the
R},,. We summarize this solution in the following
theorem.

Theovem 2: Let R}, be total at m. Then g,; is deter-
mined to within a conformal factor A by the following
formulas:

() rgy;=(w,x,));

(ii) w= Lb? Wy {a:(n—l)n3/2
a-as1 b=a+n(n+1)/2;

(ili) w=0/(0,, 32,

- bl
W=V, =24 (va: wB)wB;
Ka

. oo -
(iv) {xll’Rii,k F XLy, @ <a,
v, =
o -
X5 aza
v) (xilfl’xizfz):5515251'1/2’

3. DISCUSSION

Now having an explicit algebraic formula for g; ;in
terms of R}, , one has reduced the problem of solving
Einstein’ s equations for g,, to solving for R}, .. Since
Einstein’ s equations specify R'} in terms of energy quan-
tities alone but not R, ;, one might wish to determine
R} instead of R}, ,. Because the i and j indices play no
role in our equations, one can show exactly the same
theorems with the j index raised.

In specific cases, the formulas given in Theorem 2
may be considerably simplified. Suppose, for example,
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one has some reason to specify that the metric is diago-
nal (as in the Schwarzschild case). Then we may get the
g;; in a very simple way from the Rﬁj’k. Suppose we want
to find g;;. We have

&R 1=~ 81 R,

8ii=—8i(Ry, /Ry ) if R #0.

There must be at least one [#/ and j, k for which R, ,
=0, for otherwise the holonomy group would be (n - 1)-
dimensional. So we may start with a given index, 0 say,
and express £ in terms of £, ;. Then we find £, ; in
terms g, , ete. If we can not cover all the g;,”s in this
fashion, then the set {a/ax,i} will form an invariant sub-
space under the action of the holonomy group. This
would mean that the holonomy group is a proper sub-
group of the Lorentz group contradicting our assumption
that R is total. Thus our final solution will look like

/R,

or

g,;=1 +[R%

ik,
aRarta
ecl;

N g

ar ta

So we see that we not only have a solution, but a man-
ageable one at that. One might point out, however, that
it may be nearly as difficult to get the R}, from T,; as
to completely solve Einstein’ s equations. Although this
could be so, it is not of too much importance, since in
practice the T;; and the R}, are equally hard to deter-
mine in the nonempty case. They also enjoy approxi-
mately equal importance as physical objects—the one
being the gravitational field, the other the energy tensor.
Thus a solution of the R}, in terms of the T, would con-
stitute more a translation of the problem than a solution.
A real solution of the problem would be partially ob-
tained by an existence theorem to go with our uniqueness
theorem. An existence theorem would say when a tensor
R,{jk was actually the gravitational field for some con-
figuration. If one had such a theorem, then one could
pick an admisible Rﬁ.jk that satisfied appropriate physical
conditions and boundary conditions involving the value of
T,; on a past-light cone. Then, using Theorem 2, one
could find g;; to within a conformal factor. One would
then solve the differential equation determining the con-
formal factor to get £;; thus determining the motion of
particles in the field. So it appears the next step is to
find existence theorems for Lorentz metrics having a
given tensor R|,, as curvature.

!W. Ambrose and I.M, Singer, Trans. Amer. Math. Soc. 75,
428 (1953),

A more elegant proof can be given from the bundle of frames
point of view. An easy application of the concepts in B.G.
Schmidt, Comm. Math. Phys. 19, 55 (1973}, can be used to
construct such a proof.
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Resonance and stability of conservative systems are considered by means of a perturbation method
similar to the averaging method of Bogoliubov. The accuracy of the method is tested by numerical
simulations and by comparing the conditions for stability derived here with the well-known conditions

given by Moser and Arnold.

I. INTRODUCTION

In the following we consider conservative Hamiltonian
systems of n degrees of freedom. Assuming that the
system is near an equilibrium, a number of perturba-
tion techniques are available in dealing with the non-
linear differential equations describing the system. They
are all based on expansions in terms of a small param-
eter € characterizing the smallness of the initial de-
viation from equilibrium.,

To the lowest order (regardless of the particular
perturbation scheme) one obtains the so-called linear-
ized equations. Assuming that the system is stable ac-
cording to these equations, standard theory shows that
there exist » modes of harmonic vibrations with fre-
quencies w={wy, Wy, wy. .., W,

Carrying the approximation further, some of the per-
turbation schemes are confronted with the following dif-
ficulty. When the eigenfrequencies are commensurable,
i.e., when a vector nz{nl, Ny o voy n,,} of integer compo-
nents exists such that

W n=wym twypt...twn, =0,

the perturbation expansion may break down due to the
occurrence of terms with w-n in the denominator.

Astronomers long ago (Poincaré, 1881%) noted that
these “small denominators” lead to considerable mathe-
matical difficulties. The name given to the problem
seemed to indicate that it was mainly due to the lack of
an adequate mathematical method, and not related to a
physical phenomenon. Already Poincaré!, however,
noted that the problem was due to the very nature of
the physical system. A more adequate name for the
phenomenon is resonance, indicating that it relates to
an observable effect.

In this report we consider a particular perturbation
scheme (a variant of the “averaging method, ”
Bogoliubov?). Our aim has been to test the accuracy of
its predictions with regard to resonance and stability.

To this end we have followed two lines of approach.
First we have compared by numerical simulations the
predictions given by the original equations and the “aver-
aged” equations emerging from the perturbation scheme.
In particular we have investigated the accuracy of the
method in describing a “sharp” phenomenon like the
periodic solutions of a resonant system. Secondly we
have investigated whether, by means of this perturba-
tion method, one could indicate stability criteria for
the system. The simplicity of the well known criteria
given by Moser, 1962 % and Arnol’d 1963, has been a
great challenge.
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As it turns out, the stability criteria found through
our perturbation method are the same as those of
Moser and Arnold for a system of two degrees of free-
dom (n=2). For a system with » > 2 Arnol’d only gives
conditions sufficient for stability for a “majority of
initial conditions.” We show that his conditions cannot
be sufficient for all initial conditions. Further we de-
rive conditions that should be sufficient for stability for
all initial conditions.

1. MATHEMATICAL MODEL AND GENERAL
EQUATIONS

We consider a conservative mechanical system with
n degrees of freedom. The motion of this system is
described by a Hamiltonian H =H(g, p), where q, p are
generalized coordinates and momentum. The system is
assumed to be near an equilibrium position g=p=0
which is stable according to a linearized theory. We in-
troduce new coordinates by the canonical transformation

q-—€q, p—e€p, (2.1

where 0 <€<1 is a measure of smallness of the devia-
tion from equilibrium. The new Hamiltonian can be ex-
panded about equilibrium as

2w 2.
=2, —L(p2+g2)+ m-2
H i_;( 2 (pi q1) ’g € Hm. (2. 2)
Further w;, i=1,2,...,n, are real numbers and H,, are

homogeneous polynoms of order m in q and p.

The linear approximation is obtained from (2.2) when
€ =0, The system then executes harmonic oscillations
with frequencies wy, ..., w,, and the coordinates are
normal coordinates.

It is useful to introduce angle-action variables. We
then introduce the canonical transformation

(@, P)=(8, ), (2.3)

given by the generating function
i1,

Fy(q, 9)21_2:_11541 cotgt;; (2.4)

g, =(2J,)' # sind;,

pi = (29,)* "% cosb,. (2.5)
The Hamiltonian can now be written

H(8,J) =w-J+€Hy(8,J) + €H (0, D= .., (2.6)

and the corresponding canonical equations of motion
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become
9H; , » 0H,
—wte—>2=+ +
f=w+e¢ 33 € 37 )
j: - %% - : 2214 + (Z‘ 7)

Introducing (1.5) into the Taylor expansion (2.2), one
obtains

H=H(J) +:1;3,5“A’;(J) sin(n? - 8 + &%), (2.8)
where
Bl =w-J+e*H, +tHg+ ..., (2.9

are the contributions to H independent of 8 (the symbol
~ represents an average over all components of 9).

Further nf are n-dimensional vectors with integer
components such that Inf|=ix% |+. ..+ [}, |=k, « are
constants,

J:(JI:JZ, -'“:Jn), J; >0,
w={wy, wg. -, Q),,),
8:(91, 62’ S ] Gn):

id r
A= HIJL"iS' /2 x constant.
se

Finally if we denote the sum in (2, 8) I;, (2.7) can be
recast to the form

g O oH
S
. o
=2 2.
J=- =2 (2.10)

1. INTERNAL RESONANCE

In the linearized case (€= 0) the solution of (2.10) ob-
viously is

J=const, and 6= wt + const. (8.1)

Thus the energy of the normal mode %, J,w,
(=1,2,...,n), is a constant of motion.

If a small nonlinearity (0 < €<<1) is introduced, one
does not expect anything drastic to happen on the short
time scale 7;=1/w (where w is a characteristic
frequency).

On some longer time scale 7,=7,/€*(k> 1), however,
the total energy of the system may be redistributed be-
tween the different modes.

To obtain more insight into this process of slow en-
ergy transfer, let us consider the equations (2.10). The
first thing to notice, is that the rate of change of the
angle variable 6 is dominated by the term w. Since J is
of the order € or smaller, it takes at least a time in-
terval of the order of 7, = 7)/€ to bring about a variation
in J to zero order (in €). The angle-dependent part H of
the Hamiltonian consists of terms whose angle depen-
dence are like sin(n? -0 +«%). As 6 varies on the time
scale 7, so will in general the terms of H. The only

‘eXception occurs when ¢ - w becomes small. The rapid-~
ly varying terms of H cannot bring about any cumulative
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(zero order) change in J. This can only be achieved by
slowly varying terms. Let the lowest order term of the
latter category (of the order €*, say) have an angular
dependence sin(n®*?- 0+ «4*%). If the term had been a
constant of the order €*, it would take a time of the
order of 7,=T,/€* to change J to zero order in €. To
obtain the same result with an angular dependent term,
we must require that the variation of the angle n*'?-
does not take place on a shorter time scale than 7,
i.e.,

d

Z(nt2t.e < 2y .2
dt(n 6) <O(e*). (3.2)
The relation (3.2) can be shown to imply that
onk+2§l O(i) when =1
O{€® when k> 1. 3.3

When there exists an n in (2. 8) such that (3.2) is
satisfied, it is denoted by internal resonance.

IV. EQUATIONS OF MOTION

In studying internal resonances, it seems quite nat-

ural to apply some variant of the method of averaging
of Bogoliubov? (extended by Besjes, 1969 °). As shown
by Burshtein and Solovev, 1962,°%it is possible to find
an “averaged” Hamiltonian, such that the corresponding
canonical equations are equivalent with the averaged
original equations. In both cases one introduces the
expansion

6=0,+¢eb, +€%6,+...,

J=J,+eJ, +e’,+... . 4.1)

Here J; and 6~ w?, do not vary on the time scale 7,
while 6;, J; (i > 0) do. The equations of motion of the
slowly varying quantities are

oH

90: a—j;,

. a/./
——— .2
Jo 30, - (4.2)

The “averaged” Hamiltonian to order €* is given by the

expression (c.f. Ref. 6)
/7/ =w- Jo + €173(907 JO)res + 62[K4(90, JO)res +K(J0)]
+0(€%). (4.3)

Here H,,.., denotes the resonant terms of H,, i.e., the
terms where

nd-w<0(e). (4.4)
The quantity K,(8,, J,) is defined
1 oH
K4(90, Jo) = H4(90; Jo) + 5 J1(90, Jo) ==
2 33,
oH
+ 6,8, Jy) - _8—9:3]’ (4.5)

and K., represents the resonant terms from K,. These

consist of resonant terms from Hy, i.e., terms where
n}-w<O0(ed), (4.6)

and resonant terms originating from the last two terms
of (4.5), where the resonances
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(m}nd)-w S (@), (+5), (4.7
may occur,

The quantity K(J;) in (3. 3) is given by
K3, =EK(8,, 39, (4.8)

where again " denotes averaging over all components
of 6;. According to (4.5) and (4. 8) both K, and K are
quadratic functions of J,. To lowest significant order
the Eqs. (4.2) become

90~w+e 2, ~s1n(n 8y + i),

ires 0

Jo=—¢ Jn8Ad cos(nd - 6, + ).

i res

(4.9)
The corresponding equations for 8; and J, become

2 8 ﬂaAa .
€b, = 5J—0(H—;U)=€‘Z_:S—B—J:)s1n(n§o90+ 1),

° 8 N
eJ, =~ E(H‘H):‘ E{;L”n?Aﬁ cos(n} - 8, + k3).

(4.10)

In (4. 10) the summation is carried out over nonreso-
nant terms. The equations can be integrated directly
on the short time scale to give

~ =1 Ai

6= 2 prpen Ry cos(nd- 6,+ k3) +0(e),
i}e( ni aJO

3
Jy=— 2 o A¥sin(n?- 6,+ ) +0(e). (4.11)
ires WeIl;

From (4. 11) it is apparent that 6, and J, are rapidly
oscillating quantities. When (4.11) is inserted into the
last two terms of (4.5), one obtains K(J,) as

- 1 3
K(Jo) - H4 - P

Eap L

(4.12)
n;-w

The averaging process leading from (2,10) to 4.2)
is a time average over some interval of time Af such
that 7,<< At <7;. This should not be confused with the
process denoted by the symbol =, of averaging over all
components of 6.

V. RESONANCES AND INVARIANTS
A. First order resonance

A resonance of the order € occurs when there exists
one or more n® such that (4.4) is satisfied, i.e.,
Hg.o in (4.3) is nonzero. As a result of such a reso-
nance, one generally has a transfer of energy to zero
order between the modes.

It is in general not possible to solve the equations of
motion (4. 2) exactly, except for the special case of
only one resonance, where the equations can be solved
to the order € (see Appendix).

As the “averaged” Hamiltonian does not depend on
time explicitly, 7/ is an invariant. In the case of only
“exact” resonances, i.e,, @-n°=0, there are two addi-
tional invariants, namely w-J, and H,.... This is read-
ily shown by taking the scalar product of the last of the
equations (4.9) with w, and recalling that /4 is an
invariant,
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Even in the case where the resonance is not exact,
the quantity w-J,, which is the only zero order contri-
bution to #/ , can only have a variation of the order €
while J, changes to the zero order.

B. Second order resonance. Frequency shift

If there does not exist any first order resonances
(i.e., w-nd#0 for all nd), 8,~ wf and J,, according to
(4.2) and (4.3), do not have a variation on the time
scale T,. 6, and J, as given by (4.11) are still the rele-
vant solution to the order €. As the sum in (4. 11) now
extends over all n, the last equation gives

Hy(8,3) =~ w-3,(6,J). (5.1)

To obtain the equations for the 6, and J,, one can use
(4.2) and (4. 3). For later use, however, we want to
point out another possible approach. This method con-
sists in finding a transformation near to the identity,
that will enable us to get rid of Hy altogether. If § and
J are the new canonical variables, one can choose a
transformation characterized by the generating
function

S(9,3):9°3+€@w—1-;73,4§(3) cos(nd- 8+ «3). (5.2)
i °Hy

S generates the relation

8=25 _6_co(6,7),
23

aJ ~ ~
3= _Fren(o, b,

Y (5.3)

As S does not depend explicitly on time, the new
Hamiltonian H is given by

H=H[88, J), 38,5

=w-J+eHy(6,J) +2H, (6, D)+ ... . (5.4)

To the second order in € one obtains from (5. 1),
(5.3) and (5.4)
AH, J
aJ

Again one introduces an expansion of the type (4.1)

@:90+6292+”,,

H:woj+ezl}14(é,j)+J1(§ J) - (5.5)

F=3,+€3, + (5.86)

where the first order terms are absent for obvious rea-
sons, and 9 — wf and Jo do not vary on the time scale 7,
and Tl'

The equations governing éU and ju to the second order
in € are found to be

b= 2 W ot awte <8K4> ,
aJ0 Odo Jres
5= :<2<——ff{4> 5.7
890 ’90 res

where

rw=et K

aJU )
Here K4(90, ) is given by (4. 5) and K(jo) by (4.12).
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Like the case of first order resonance, the equations
(5.7) cannot in general be solved exactly. An exception
is again the case where there is only one resonance
present (see Appendix).

Again #/ is an invariant, and the zero order contri-
bution to //, w-J, can only have a variation of the
order €2,

When no second order resonances are present, (5.7)
reduces to the form

90—w+Aw, Jo—-O (5.8)

which shows 30 to be constant on the time scale 7,.
Another important fact to notice is the frequency shift
Aw, which is a linear function of 30, of second order in
€. The finite amplitude vibrations change slightly (to
the order €?) the average properties (equilibrium) of the
system, which again influences the eigenfrequencies.

C. Periodic solutions

When first or second order resonances occur, there
is generally a continuous flow of energy between the
interacting modes. When only one such resonance oc-
curs, the Hamiltonian generating the equations of mo-
tion for 6; and J, can be written

H=w-J,+ €K+ €A(J,) sin(n + 6, + «), (5.9)

where we have assumed that there are no resonances of
the second order. For completeness we have kept the
€? term giving rise toa frequency shift.

The equations of motion are

90:w+52%+€ o4

infn- 0, +
3, 53, ——sin{n - 8+ «),

j():—eAncos(n~90+K). (5.10)

If a solution can be found where neither n-+ 6; nor J,
varies, then no energy is transferred, and the reso-
nant modes have periods that are exactly commensur-
able. Such a solution therefore represents a periodic
motion and occurs when n- GO—JO— 0, i.e., when

n-6+x=(n/2)+Nn, (N=0,1),
and

2 K

57, (5.11)

n°w+ne[€ +€——(-—1)}
Taking into account the structure of
A (AOC ﬂlJilnil /2)’
1=

one obtains instead of the last equation

A XNngln
(w+ +e= UL ES
ne(w+Aw) +¢€ 22:{ 7, 0, (5.12)
which gives for exact resonance (n-w=20)
2onn, |
1%1, I =0(¢) (5.13)

As to the stability of the periodic solutions, an ana-
lysis shows them to be stable provided

(V¥ (n-w)? ~ 0.

byl
A? Z,T‘ —F
P - (5.14)
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Thus for exact resonance, (5.14) is always satisfied.

In Sec. IX we have tested a particular system by nu-
merical solution of the basic equations. In particular
we wanted to find out by what degree of accuracy the
averaged equations would describe a “sharp” pheno-
menon like the periodic solutions. The results indi-
cated a surprising accuracy even for such high values
of € as 0.1.

Vi. HIGHER ORDER RESONANCES

In the following one considers the case where first
and second order resonances are absent. The trans-
formation procedure outlined in the previous section
can be repeated to get rid of the € terms of the angle-
dependent part of the Hamiltonian. The relevant ca-

~nonical transformation is now

2

- €292(§; j:)’
F=i+e3,(0, 5. (6:1)

Here 52 and 32 are found by direct integration (on the
timescale 7;) of the canonical equations for these
variables.

The transformation process can be repeated to get

rid of €%, €, ... etc. contributions to H-H (i.e., the

angle dependent part of the Hamiltonian), as long as
no resonances occur to these orders (c.f. Birkhoff,
1966 7).

Let the first resonance occur to the order €*, and
assume for simplicity that there is only one resonance
to this order, N*w say.

The Hamiltonian becomes
H=H+¢€*F(6°,3, (6.2)
where
H=w-J'+EK(J') + O(eY),
and the variables 6°, J’ are the end products of the

chain of transformations near to the identity, men-
tioned above.

One introduces the expansions
7 __ 2
Gp=6,+€ 6, +

J'=J,+ed +..., (6.3)

where again 6), J, have no variation on the time scales

Toy Tipee., and Tpa

The equations governing the variation of 6, and J,
become

. oF oF
= = 4 ¢k
=33, "€ (BJO)

(6.4)
which are on a canonical form like (4. 2) and (5. 7) with
# given by

AH =H+ GkFl, .

Let F, ., be given by

(6.5)
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Frszsin(N°90+K). (6.6)

From (6.4) and (6. 6) it is seen that J,|IN. Introducing
the new variables J and ¢ by

P=N-08;and Jy=h+NJ,
where h is a constant, one obtains the equations

. 3H 0A
= —— +e* ——sin(y +
v 57 € aJsm(“b K,

J=— A cos(d+ K. 6.7

A necessary condition for a resonance to bring about
a zero order change in J,, is that the variation of
does not take place on a shorter time scale than 7,. Re-
ferring to Eq. (6.7), this condition can be stated ex-
plicitly as
dH

ZZ < 0(eM).

77 (6.8)

Taking into account that an expansion of H in terms of
J correct to the order €, only contains terms of power
m <k in J, the above condition can be replaced by the
following set of conditions

d"H
dJm J =0

all m <k (k even)
or m<k-1 (k odd).

(6.9

As k> 2 for a higher order resonance, a necessary con-
dition for these resonances to transfer energy to zero
order is

< O(€? for {

iiﬁ[ =[w+Aaw(0)]: N <O(emintk:)y, (6.10)
aJ J =0
and
a*H » 9K
= . <N g O(gnintk,)y 6.1
AP |, T N gy, N0l ) (6.11)

For #»=3 the conditions (6.10)—(6.11) are equivalent
to (6.8). For »>3 (6.8) is more restrictive than (6. 10)
and (6.11).

It can also be shown directly from the invariance of
#, that (6.10) and (6.11) are necessary conditions for
a zero order variation'of J,. If J, is given by h initially
[J,(0)=h], Jis a direct measure of the variation in J,.
From the constancy of # one obtains

oK €t K
42 98 NI+ N JNJ? + Ofet
[“’ <3, ,:0] NI+ N orsy, "N 10l
+€*F,,,= const, (6.12)
where
2 Ky _
€° — —Aw(O).
g 1=

If the relations (6.10)—(6.11) are satisfied, the first
two terms in (6.12) become of the order €™%** For
k=13 this may be sufficient for J (and thereby the vari-
ation of J;) to be of the order zero, as shown by simu-
lation of a particular example in Sec. VIII, For k>3
the term of order €* in (6.12) must be taken into ac-
count, and the condition (6.9) becomes much more
restrictive.

In any case, if only the relation (6.10) is satisfied
(i.e., the resonance condition is satisfied initially),
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(6.12) tells us that the variation of J, will be bounded
like

‘\Ji E,O(Emin(k /2,2)-1)' (6 13)

The relation above tells us for example that for k=3,
Jy can only have a variation less than or of the order
/e
V€.

VII. RELATION TO STABILITY

If the equilibrium q=p=0 (Sec. II) is a true equilib-
rium, the eigenfrequencies wy, w,..., w, are positive
quantities. This is so, because the total energy asso-
ciated with an arbitrary small perturbation must be
positive.

If the “equilibrium” is not a true one (e.g., the re-
stricted three body problems and the gravity gradient
satellite problem-—see Alfriend e/ al., 1972 ®) one may
still end up with a meaningful expansion like (2.6). In
this case, however, there is no reason to expect that
the Hamiltonian of the perturbed motion {(2.6) is posi-
tive definite. That is, some of the guantities w; may be
negative.

In problems of nonlinear interaction of waves one may
have a similar situation with “negative energy waves”
(see, e.g., Dysthe, 1970 °).

In the case where all w; are positive, equilibrium is
always stable in the sense that small perturbations
from the equilibrium remain small.

If, however, some of the w, are negative (and some
positive), a “kinematical” possibility for an instability
exists. This is so because it is now possible to increase
the energy (or rather the absolute value of the energy
lw;Jd; 1 of the different modes without violating the
conservation of total energy.

As can be seen from the previous sections, the only
dynamical effect that can bring about an appreciable
change in J are the internal resonances. For a given
resonance n- w =0 one has Jlln. Since the components
J;7 0, an “unlimited” growth can only occur if all com-
ponents of n are positive. The resonance condition can
still be satisfied, as some of the components of w are
negative.

As shown in the previous sections a {irst or second
order resonance n-w=0, may transfer energy between
the different modes, if the components of n are all posi-
tive, this means that positive energy will be transferred
from the negative energy modes to the positive energy
modes. Thus the absolute value of the energy increases
for the modes involved in the resonance, and we have
an unstable situation.

For the higher order resonances, however, the con-
dition (6.8) must be satisfied in order to have transfer
of energy. A sufficient condition for stability can be in-
dicated as follows.

(a) No first and second order resonances should exist.

(b) While higher order resonances may exist, the re-
lation (6.11) should not be satisfied.

Arnold, 1963 * gives somewhat different conditions.
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Instead of (a) he introduces the condition
(A) w-n#0 for all n such that Inl<4,

which is more restrictive since a violation of (A) does

not imply that a resonance actually occurs in the system.

Instead of (b) he gives the conditions

2*K }

i — |

@) DetIaJOaJO 0,

(B)
or
°K

—w

(ii) Det | 8403ds |20,
w 0

For a system of two degrees of freedom (n=2), it is
easily shown that (b} and [B (ii)] are equivalent. For #
>2, however, (b} is more restrictive than both [B (ii}]
and [B (i}].

To illustrate this point we have constructed an exam-
ple with n=3, where [B (i) and (ii)] are satisfied and
{(b) is not.

Such a system should according to Arnold be stable
for a majority of initial conditions. We find (c.f. Sec.
VIII) that when the initial data is chosen such that (6. 10)
is satisfied, the system is unstable. To satisfy (6.10)
J(0) must be chosen from a section of J space of mea-
sure (volume) €, so Arnolds conclusions are not
contradicted.

Our results show, however, that in order to obtain
general criteria of stability (not excluding a minority
of initial conditions) one should apply a condition of the
type (b) rather than [B (i) and (ii)]. It seems that a suf-
ficient condition would be (A) together with the require-
ment that K(J) be definite.

VI, AN EXAMPLE

In studying the effect of higher order internal reso-
nances, we have considered a system with the
Hamiltonian

3
H=2 SUP +a?) + €l + EH + CH 0, (8.1)
where
H,=0,
H4 :AII% + qu +Cq§;
Hy = qiqiq;. (8.2)

For one internal resonance to order € we obtain the
averaged Hamiltonian

H = w-J+36%(AJ% + BJ% + CJE)
+é %J,JZ(J3)”Zsinn»9+O(€4), (8.3)

that is

H=w T+ -K-J+€D(J) sinn - 6 +0(e), (8.4)
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where

0
K= B (8.5)
0

[N
[==2HN
[oX=K=]

From (6.10)—(6.11) a necessary condition for a
transfer of energy to zero order is
(w+2€%h -K) -n < O(e%),
and
n-K-ng0(e). (8.6)
The exact equations of motion are given by
gy +wigy + €w (4448 + €2914393) = 0,
iy + wigs + €W, (4Bq3 + €243q2q5) = 0, (8.7
s + wigs + €wy(4Cq3 + eqfgd) = 0.
A. Simulation

We have simulated (8.7) for two internal resonances
to order €®, using an integration routine described by
Bulirsh ef al,, 1967.1°

(A) When n=(2,2,1),

with constants
w=~1,91, w;=0,82, A=% B=— £, €=0,1,

w; and C satisfying (8.6),
and initial values
. 3 .
Q=1 =5, =3 q2=‘/7wz, qﬁg, 75
= %“’3
This gives
9(0):291+292+93=2»g +zag +’§T:n, J3(0) = 3y .
Arnold’s conditions for stability, VII(B), are satisfied
K | oL
e [K|~0.28#0,
2K
33,03.°1 K w
A E =2,02 %0,
(] 0 w 0

(B) Whenn=1(-2,2,1),
with constants

w;=1,91, w,=0,82, A=% B=-% ¢=

wl=

w and C satisfying  (8.86),
and initial values
©1=1, ¢1=0, ¢;=1, ¢;=0, ¢3=0, g5=w,.
This gives
0(0) =26, +26,+ 6,=2(1/2) +2-(n/2) + 0= 2m,
J(0) =%w;.
Arnold’s conditions for stability are satisfied

|K|~0.16%0,

K “"z3.4¢o.
w 0
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FIG. 1. Evolution of average energy of oscillators, positive
and negative energy oscillators.

B. Results

For the system (A) an “explosive” growth is obtained
on the time scale 7;, the results are given in Fig. 1.
After a certain time, however, the growth is saturated,
and energy is transferred the oppoiste way due to the
presence of higher order terms.

For the system (B) a transfer of energy is obtained
on the time scale 7,. Energy from mode 2 and 3 is
transferred to mode 1. The results are given in
Fig. 2.

IX. A TEST OF THE METHOD OF AVERAGING—
ELASTIC PENDULUM

We consider the elastic pendulum (a two degree of
freedom system) c.f. Van der Burgh, 1968.%

The system consists of a linear spring with zero
mass, length /;, and string constant 2. With a load of
masgs »1, the length in the equilibrium position is /,
c.f. Fig. 3.

1 1 .

1006 2008 3000 sec

FIG. 2. Evolution of average energy of positive energy
oscillators,
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The Hamiltonian is given by
- k m .
H:%m(q? + P~ qf) + ?(l +q.)%q% +mg(l +4,)(1

— €08¢,), (9.1)
and the exact equations of motion are

G +wigqy - cosgy — (I +q1)q'§ +g=0,

v o2 Sinde 2 gy _

q2 Wy 1 +(]1/l 71 +(]1/l 0) (9- 2)
where

G=7 g=6, wi=k/m, wi=g/l. (9.3)

Choosing k/m =4{g/1), there is a resonance to order
€, i.e.,

W, = 2w,. (9.4)

Defining 6=20, - 6;, the averaged Hamiltonian is
found to be

31 fw)\ Y . 1
H=w-J- |5 F(=2) ()2, sin0 + = ($}J,J.
4] \m 1 2 ml 192
- #J3), (9.5)

the equations of motion to the order € are given by

o A J . 39 1
= +——217-2 o0+ —
91 Wy ) (J1) sin 84 ’T}’—LFJZ’

o X 1
8, = wy + A(Jy)1/2 s1n9+;ﬁz(%-2J1—13§ng), (9.6)

Jy = A(J)M2T, cosb,
Jp == 24(Jy)' /2], cos®,

where

3 fw\ 12
A_4l <m> ’

Periodic solutions occur when é:JI:Jzz 0. From
(9. 6) one obtains the following conditions (expressed in
the variables ¢) correct to order €

FIG, 3. The elastic pendulum,
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il
z
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<
1073
A 1
2s 0s time
2/2 35¢q
d20=%* —1 910 —‘3'5% . (9.7

As shown in Sec. V these oscillations should be
stable.

Simulation

We have simulated the equations of motion (9. 2),
(9.6), and the resulting action variables are given by
Fig. 4 and Fig. 5 for the cases of considerable energy-
transfer and for periodic oscillations of the order €
(in this example € is of the order 0.1). The rapidly
oscillating parts result from simulation of (9.2). This
shows that simulation of the averaged equations (9. 6)
are highly effective and laboursaving.

We further searched for the periodic solutions and
chose ¢;,=0.06m, w,=4.0, g=9.819"/sec’. From
(9.7) periodic solutions are obtained for g,,=+ 0. 2470.
The simulation indicates a periodic orbit for g,,=
+ 0.2436 (Fig. 6). Thus the difference between our nu-
merical estimates and those calculated from the aver-
aged equations are of the order €.

;WAM/—\
k2
z
ol
zt
<
x
g
< FIG. 5. Action vari-
1073 ) ables for the elastic
2s 0s time pendulum, periodic os-
LJz cillations of the order
€. Exact and averaged
@ equations.
z
& L
<t
x
Bli2
<
2s 1l0 s time
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APPENDIX
1. Exact solution to order ¢

Suppose there exists only one exact resonance to
order €. To this order the equations of motion are
given by

o A
00:w+€§—» sin(n - 8,= ),

ad,
Jy=— €nA cos(n- 6, + K). (A1)
From Sec. V we have the following invariant to order
€
Hy oo =A(Jy) sin(n - 8, + «) = E; = const. (A2)
(A1) gives J,lIn, therefore we introduce h and a
J,=h+na (A3)

where h is a constant vector giving the intial values of
J;. Then we obtain

‘fi—;" =F (A - EH'2=7 €(C1 ¥ + Cpa® + Coa +C )2,
' (A9)
where
C;=K#3nnn,
C,=3Kinnh,
C;=3Kinhh,
C,=K3ihhh- E?, (A5)

and K is a symmetric tensor of order 3 given by
AYHJ)=K:iTJJ,. (A8)

The solution « of (A4) can be found by using elliptic
functions.

2. Exact solution to order €2

Suppose there is only one exact resonance to order
2

€. To this order the equations of motion are given by
: 2
6= w+ €2 T (&) +SJ,) sin(n - 6, + «)],
0
Jo=~ €nS(Jy) cos(n - 8, + x), (A7)

where S(J;) is a homogeneous polynomial of order four

1 L

.1072 1o a, (radians)
L
I
___________________ l“““"“"_"“ —
q; {meters)
,:07%{(%%):teo-g‘zpovzcae) o ,(c‘,qQ):(E»TO'2A02A36)
{6,8,)=3-107, 2610 14,6, =100}

- 60102
A 3(31‘921-(60 10_3,02435)_3
(8y.4)= -23-10° 1191073

FIG. 6. Simulated periodic orbit for the elastic pendulum.
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in the components (J;)!/% and K(J,) is given by (4.12).
The following invariant to order € is obtained:

K(J,) + S(J,) sin(n - 8, + k) = E, = const. (A8)
By introducing h and « as in (A3) we obtain
‘;—‘;‘ =+ e[S(a) - K(a) + E,][S(a) + K(a) - E,JM2,
(A9)

where $%(a) - [E, - K(a) P is a polynomial of order four
iin @. The solution « of (A9) can be found by using el-
liptic functions.
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Motion of a body in general relativity*

Robert Geroch and Pong Soo Jang

Department of Physics, University of Chicago, Chicago, Illinois
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A simple theorem, whose physical interpretation is that an isolated, gravitating body in general

relativity moves approximately along a geodesic, is obtained.

1. INTRODUCTION

It is a consequence of Einstein’ s equation in general
relativity that the divergence of the stress—energy ten-
sor of matter vanishes, i.e., that, in physical terms,
“locally, energy and momentum are conserved.” One
might expect, therefore, that it should be true in some

‘sense that the motion of a body in the theory must be
along a geodesic. One would like to prove some theorem
in general relativity to this effect. The difficult part of
obtaining such a theorem is apparently the formulation
of its statement. A physical body is described in the
theory by a four-dimensional region of space—time:
What, then, is to be meant by “move along a geodesic ?”
Even the passage to an infinitesimal body does not im-
mediately resolve the difficulty, for in this case, al-
though one indeed obtains a unique world line for the
body, the metric would be expected to become singular
there: What, then, is to be meant by “this world line is
a geodesic?”

A number of results suggestive of geodesic motion are
known.

It is easily shown that, if the matter consists only of
dust, then the world line of each dust particle must be
a geodesic., This result suggests the following conjec-
ture: The world tube of any body contains a timelike
geodesic, Indeed, this conjecture is known! to be true
for the case of a perfect fluid with isotropic pressure.
Unfortunately, the conjecture is apparently false for
more general sources.?

In an alternative approach to the problem of motion,
due to Newman and his co-workers, ? the motion of the
body is described in terms of the asymptotic behavior of
its gravitational field. The final equations governing this
asymptotic field are indeed suggestive of geodesic mo-
tion. It appears, however, to be difficult to interpret
these equations directly in terms of the appearance of
the body to observers in its local neighborhood. Fur-
thermore, the method is not immediately applicable to
the case of one body moving under the influence of an-
other, since the asymptotic analysis would require that
both bodies in this case be regarded as a single system.
It has been suggested® that both of these difficulties can
be avoided, at least for the case of a black hole, by re-
interpreting the equations as representing the behavior
of the gravitational field near the hole.

A third approach® involves the passage to the limit of
an infinitesimal body, i.e., the replacement of the phy-
sical body by a “line singularity” in an otherwise smooth
space—time. One wishes to show, by analyzing the
structure of such a singular world line, that it repre-
sents, in some sense, a geodesic. Since the metric it-
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self is singular on this world line, one is forced to in-
troduce some sort of averaging procedure. Apparently,
the procedures available at present may not be indepen~
dent of the choice of coordinates. Furthermore, recent
work® suggests that there may even be ambiguities al-
ready in the attachment, to a smooth space—time, of the
“world line of singular points.”

Finally, we mention an approach due to Dixon,” in
which one introduces a certain world-line within a gravi-
tating body, a line which suitably generalizes the New-
tonian center of mass. The acceleration of this world
line is expressed as a sum of integrals over the body,
where these integrals represent the interaction of the
mass multipoles of the body with the curvature of
space—time. Geodesic motion arises as follows: One
would expect that, for the case of a “small body, with
little multipole structure, ” these integrals will also be
small, whence the center-of-mass line will be nearly a
geodesic. Of course, this formulation gives, not only
this geodesic limit, but also the motion of a body in de-
tail. Consider, for example, an isolated body which is
spherical and homogeneous, except for a small region of
higher density, slightly displaced from the center. One
expects (e.g., from the Newtonian limit) that the center-
of -mass world line of such a body will not be a geodesic;
the present formulation would express this acceleration
in terms of integrals over the body. Yet external obser-~
vers would see the body as a whole moving approxi-
mately on a geodesic. What one might like to do for this
example, and what is apparently difficult to do in detail,
is introduce an “average acceleration” of the entire
body, rather than an “acceleration of its average
position. ”

The purpose of this paper is to introduce still another
approach to the problem of the motion of a body in gen-
eral relativity. Our approach differs from those dis-
cussed above in one, apparently minor, respect: We
first introduce a world line, and only then the gravitating
body, rather than the other way around. One is thus able
to obtain a theorem which suggests geodesic motion,
which is general, and yet which is extremely simple,
both to state and to prove. The disadvantages of our ap-
proach are, first, that the physical interpretation of the
theorem is somewhat less direct, and, second, that the
method itself is not well-suited to obtaining any further
details about the motion of the body.

2. MOTION OF BODIES

We first recall some facts about the motion of a body
in special relativity.

We represent our body by a nonzero, symmetric ten-
sor field 7%, its stress—energy, on Minkowski space

Copyright © 1975 American Institute of Physics 65



M, where this T is conserved: V,T**=0, Denote by P,
and J,, (=J\,,,) those tensor fields® on M with the follow-
ing property: for any Killing field & on M,

‘Paga'*"]lzbvagb:fsjubgbdsa’ (1)

where the integral on the right extends over any space-
like 3-surface S cutting the world tube of the body, i.e.,
cutting the support of T. By conservation of T and
Killing’ s equation, this integral is independent of the
choice of S. Physically, P, and J,,, evaluated at a point
of M, represent the momentum and angular momentum,
respectively, of the body about this point as origin.
From the fact that the left side of (1) must be indepen-
dent of position, it follows that

v, £, =0,
va‘]l;c:ga[ch]" (2)

This, of course, is the dependence one would expect of
the momentum and angular momentum on the choice of
origin,

Now suppose that our 7%® satisfies the following
(strong) energy condition: For ¢, and ¢ any future-
directed timelike vectors at a point at which 7°? is non-
zero, T°%t] is positive, It follows in this case from (1)
(choosing for & a time-translation) that P, is also time-
like and future-directed. Define the center-of-mass
world line v of the body as the set of points of M at which
Pj =0, It is easily checked from (2) (which can be in-
tegrated explicitly) that this y is a timelike geodesic,
with tangent vector P°.

There remains only to show that, in some sense, this
center-of-mass world line ¥ remains “near the world
tube of the body.” Define the (spatial) convex hull of T
to be the union of all segments of spacelike geodesics
having both endpoints in the world tube. Consider now
(1), evaluating the left side at a point p of v, using for
the S on the right the spacelike 3-plane through p ortho-
gonal to P#, and using for £° a boost about * at p. For
these choices, the left side of (1) vanishes. But the in-
tegral on the right is a positively weighted average, over
the support of T, of position relative to p. Hence, p
must lie within the convex hull of 7', We conclude that
the geodesic v lies entirely within the convex hull of 7.
In this sense, then, a body in special relatively “moves
on a geodesic.”

Of course, the above result is not available in the
presence of curvature, for one does not normally have
enough Killing fields in that case. Our result is the
following:

Theorem: Let M, g, be a space—time. Let I'be a
curve on M satisfying the following condition: For any
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neighborhood U of I', there exists a nonzero, symmet-
ric, conserved tensor field 7T%® on M which satisfies the
energy condition, and whose support is in U, Then T is
a timelike geodesic.

The proof consists of noting that “the nearer one is to
T, the more nearly is the result of special relativity
applicable.” Fix, ® once and for all, a flat metric g, in
some neighborhood of I', such that the metrics &, and
Z,,, as well as their derivative operators VvV, and V,. co-
incide on I'. Consider a symmetric 7% having support
in this neighborhood. For each spacelike 3-plane (with
respect to g) S, define P,(S) and J,(S) by (1), where the
Killing fields therein refer to §, and where the integral
on the right is to be carried out over S, For each S, this
P (S) and J,,(S) satisfy (2), and so we obtain as before a
geodesic (with respect to g), y{(S) at a point of the con-
vex hull (with respect to g) of 7.

Now suppose that 7%? is conserved with respect to g.
Then 7°® will not in general be conserved with respect
to Z. However, since the derivative operators coincide
onI', V,T¢*=(V, - V,)T°® can be made as small as we
wish (relative to the size of 7*?) by choosing the support
of T°® to be sufficiently small. Since the difference be-
tween the righ'tv sides of (1) for two surfaces, S and S,
is given by [,(V,T%?)£, dV where the integral extends over
the region V between S and S’, this right side can also be
made as small as we please. That is, the geodesics
v(S), as S ranges over 3-planes, can all be made to be
as close to each other as we wish. From this and the
fact that the intersection of each S with the convex hull
of the world tube contains a point of some y(S), we con-
clude that the curve I is as close as we wish to some
geodesic (with respect to g). But this is possible only if
T is itself a geodesic with respect to . Since V, =V, on
I', T must therefore be a geodesic also with respect to

8.

Of course, the physical interpretation of the theorem
is that, for any body, “insofar as that body is sufficient-
ly small compared with the curvature that it may be re-
garded as a realization of the limit implicit in the theo-
rem, then to that extent so may it be regarded as follow-
ing some geodesic I'.”

Finally, we remark that the theorem does not conflict
with the standard (nongeodesic) equations for the motion
of a spinning body, or of a body with a quadrupole mo-
ment. For a body satisfying the energy condition, and
with spatial extension of the order of 8, its angular mo-
mentum per unit mass and quadrupole moment per unit
mass cannot exceed the order of 8 and 3%, respectively.
Thus, for such a body, the effects of angular momen-
tum and quadrupole moment on its motion can be made
to be as small as one wishes by choosing the body itself
to be sufficiently small. The theorem, however, asserts
only that I" is a geodesic if “arbitrarily small bodies fol-
low I'.”
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A dispersion series for nonlocal potentials
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For a class of short-range nonlocal potentials, and for the energy variable E in a certain part of the
complex plane, we obtain a generalized subtracted dispersion relation which relates the forward scattering
amplitude to contributions from negative energy pole terms, a usual dispersion integral along the
positive real axis of the complex energy plane, and a uniformly convergent infinite series, apart from
subtraction terms, subject to the condition that no bound state exists with energy less than —v?,

where y is some parameter of the potential.

I. THE RESULT

We consider short-ranged rotationally invariant non-
local potentials V(x,x’) satisfying the following
conditions:

(1) V(x,x’) is real, V(x,x")=V(x,Xx)
(2) V(x,x’) is rotationally invariant:

VX, x' )= V{x, x7, cosv),

x=|x|>0, ¥ =[x]>0, 1=cosv>-1,
where v is the angle between x and ¥,

(3)

Vix, x', cosv)

+ m - ~
_ ugm_m ¥ (x, ', cosv)

(%' + aY" exp(~yx')
xl(!

y>0, a>0, m=0,1,2 -, etc., 2>a=0
where V(x,«’', cosv) is continuous in x, x’, and cosv in
x>0, ¥ >0, and 12 cosy= ~ 1, and bounded in this

region.

(4) The system has no negative energy bound state
with energy less than - 2.

For any potential belonging to this class, the forward
scattering amplitude F(k)Y=f(E), where E=#", is
holomorphic in y > Imk >~ (y —¢), for any einy2¢e>0,
perhaps with the exception of a finite number of poles
at the nonreal zeroes of A(k),! where A(k) is the
Fredholm determinant of the kernel

K(k;x,x’):i;l/dx"

o EXplikix ~-x" |) Vix'. %),
[x-x"|

We introduce a region (s, 7) in the E plane as follows.
We know that® A(k) is holomorphic in Imk > -y whose
zeroes in Imk >0 are finite in number and are all
situated on the upper imaginary axis Rek=0, Imk>0
and correspond to negative bound state energies of the
system. We define U,(s) to be the set {&]s>1Imk >0}
where v > s> 0 and s is sufficiently small so that U, (s),
the closure of U,(s), does not include any nonreal zero
of A(k). We next define U (s, 7) to be the set of all points
in U (s) which are at distances more than some positive
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number T from the real zeroes +k,, +k,, ..., %, with
k,>k, ,>->k >0, and the point 2=0, if A(0)=0, of
A(k).* We then define a region W (s, 7) in the E plane to
be W,(s, 7)={E=F|k=U(s, 7)}. Then we have the
following result, valid for E= W (s, 7):

_ - gy & B
f(EY=D,+D(E~E)+(E~E,) 121 F-F
+ _ q
(E-E) 2 2 55(+ T
(E~E) (7 .. ImAE) 1 -
M— fo & gy oo L W

where x>0 is an arbitrary positive number, E7, !
=1,2,...,N", are the negative bound state energies of
the system (which are assumed to be all greater than
-v?), E, is any constant not on the interval [0, %) and
not equal to E; and —(y +px)? for i=1,2,....N" and
p=1,2,..., and D,, D,, B, for i=1,2,...,N", and
G, are constants which are likely to depend on x and
E,_. Here the infinite series is uniformly convergent with
respect to E for E= W,(s, 7). We call this series a
dispersion series. This relation is also valid for

Ec (s, p)={E=F ke Us), |[E-F>p, i=1,2,.... n,
for some arbitrary p, and E satisfying further [E|>p
if A(0)=0}. We represent the regions U,(s, 7) and I(s. p)
in Figs. 1 and 2, respectively, for the case n=1,

A(0) =0,

We now write down a similar relation valid for E

FIG. 1. U,(s, 7) is the shaded region, for n=1, A(0) = 0.
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E plane

FIG. 2. Ifs, p) is the shaded region for =1, A(0)=0.

belonging to part of the positive real axis. We define,
for any p >0, the set I(p)={EI|E>p, |IE-E;|>p,
i=1,2,...,N}, where the set {E,)i=1,2,...,N*} are
the positive energy eigenvalues of the system. Then for
E= I(p), we have the relation

Re f(E)

=D +D(E~E)+(E E)Zi B;
-0 1( - r) - r i1 E_E;

GPa

o Qp
HEEX L L EEGprT

p=1 g=4

_____.(E_E’)z f"" ’ __Im_f(E_l
+ . P A aE (E,_Er)Q

1

“FoE) @ @

with the same constants as before.

{l. METHOD OF PROOF
We now outline the proof of the result in Sec. L

To start with, we introduce the Hilbert space / *(0, <)
of measurable functions f(x) on (0, ) satisfying

f: dx 22| f(x) |2 < o
with scalar product
(fin Fo)= [ dx® f,(x)% Fo(x)

for f,, /, belonging to the space. We also introduce the
following set of functions:

P p(x) =x' exp[- (i, +pA)xl, ©>x>0,

(=0,1,2,..., p=1,2,..., A>0, u,=y-4u,

where y> u >0 if the system has no negative energy
bound states and y > u > (E, )'/2> 0 if there is at least

one negative energy bound state, with £, being the
lowest of the negative energy eigenvalues.

By using the transformation
¥ =exp(—2xx)

and using the Weierstrass approximation theorem, % we
may show that for any given [ any continuous function on
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(0, ) vanishing outside some interval (1, £), £>7>0,
can be approximated arbitrarily closely in / 2(0, ©) norm
by linear combinations of ¥,,(x), p=1,2,--+, for fixed
I. Consequently, for any given [, the linear span of the
set {,,(x)1p=1,2,-+-} is dense in / 3(0, =). If we let
{¢,.(x)1m=1,2,- .} denote the set of orthonormal func-
tions in / 2(0, ) obtained from the set {y,,(x)1p=1,2,---}
by the Schmidt orthonormalization procedure, then it
forms a complete orthonormal basis in /?(0, »), for any
given [.

We introduce the Hilbert space LZ(R®) of measurable
functions f(x) on R® satisfying

[ax [fm)P<
equipped with the scalar product

(firfa=[ dx f,(x)* f,(x)

for f,, f,= L*(R3).
Putting
V(x, %) =exp(~ px) V(x,x)exp(- ux'), x= x|, =%,

and introducing

Clm":fow fow jll dx dx’ dcosv V(x, ¥, cosv) G (%)

X¢, ('} P (cosv), 1=0,1,2,+-+ m,n=1,2,-

b
with X- X' =xx’ cosv, we define

V, (%, %) =exp(— ux) V ,(x, % ) exp(— ux'),

N L M N
VA(X)X,):E E E clmn ¢Zm(x)¢1n(x’)Pz(COSV)y

1=0m=1 n=1

where A denotes the triplet {L,),N}. From our result

on the completeness of the set {¢,,(x)|m=1,2,--:} for
arbitrary /, we obtain

lim |[V,-VI=0, lim ||V, -V|l=0,

A~ A~
where || || is the Hilbert—Schmidt norm for Hilbert—

Schmidt operators in ALZ(R“) A-~~omeans L,M,N—
s1mu1taneously, andV, V,, V, V, denote operators in
(R®) with the respective kernels Vix, x), etc.

We reintroduce the kernel

K(k;x, x’)——/d”

for Imk > — 1, and introduce the following other kernels,
also for Imk > - u:

exp(ik|x—Xx"1|)

V II’ 7
Ix—-x"| (=", %)

-1 exp(ik | x—x"1)
. 1y — — VRl A S i Y 7 ’
K, (k;x,x')= yp fdx %] V,(x",x),
K(k x x/ —_ —/ d ¢ exp Zk Ii// ‘x” I) V(x”, x’ ))
K (k X, X )_ _— [ > exp(lklxxﬂ ix” I) A(x” X )

If we let A(k), A (k), A(k), and A,(k) be the Fredholm
determinants, for Imk > — u, for the kernels K(k;x, x’),
K, (k;x,x'), K(k;x,x'), and K, (k;x,x') respectively, de-
fined as in Ref. 2, we have the relations

AlR)=A(R), A,(R)=A,(k), Imk>-p.
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If we further let K(k) and K, () be the integral
operators in L?*(R®) with kernels K(k;x, x’) and KA(k;x, x'),
then they belong to the Hilbert—Schmidt class, We can
prove, for any p, satisfying > u,>0,

KBl < const, Imk>-— e
and

lim K3(k) - K*(B)| =0, n=1,2,-

A-w

’

uniformly with respect to %2 in Imk > - 4,, by induction.
Hence, using a result of Ref. 6, we have
Tr 1€A"(k)A:o Tr K"(k), n=2,3,-,
uniformly with respect to % in Imk > — u,. We also have
TrIEA(k)A—; TrK(k)
uniformly with respect to %2 in Imk > - 1,

Hence we obtain, using a formula of Ref. 7 for the
Fredholm determinant of a Hilbert—Schmidt operator,
the result

A, (k) = A(R)

A~

uniformly with respect to # in Im&> - u,, and conse-
quently the result

A, (R) ot A(R)
uniformly with respect to 2 in Imk > - u,. Similarly,
using a formula of Ref. 7 for the Fredholm minor of a
Hilbert—Schmidt operator, we obtain

lim 1A, (k3= Alk;+, ) =0

uniformly with respect to 2 in Imk> -~ 1,, where &(k; )
and 4,(k;-,), for Imk> - i1, are the Hilbert—Schmidt
operators in L*(R®) whose kernels are the Fredholm
minors of the operators K(k) and K, (k) respectively.

We have

A(k;x, %) = exp(iux) Alk;x, X') exp(~ px'),

A, (k;x, x) = exp(ux) A, (k;x, x') exp(- px'), Tmk> <,

where A(k;x,%x’) and A, (k;X, x') are the Fredholm minors
for Imk > — u for the kernels K(k;x,x’) and K , (k;%, X’)
respectively, defined as in Ref. 2.

We now let F(k) and F (k) be the forward scattering
amplitude corresponding to the potentials V(x,x’) and
V,(x,x’) respectively, which can be shown® to be holo-
morphic in {Imk| <y, perhaps with the exception of a
finite number of nonreal poles in each case. Using the
results obtained above, we can demonstrate

Fy(k) ~ FlR) (3)

uniformly in W(s, 1,1), for any sufficiently small posi-
tive {, where W(s, 7, ) is the set of all points in

s> Imk > —{ which are at distances more than 7> 0 from
the real zeroes of A(k), where 7 is arbitrary.

For the scattering amplitude F,(k), which is actually
holomorphic in Imk > — ¢ for some sufficiently small
e> 0, perhaps with the exception of poles along the upper
imaginary axis =ik, k>0, we have the following sub-

70 J. Math. Phys., Vol. 16, No. 1, January 1375

tracted dispersion relation, valid for E in the complex
E-plane cut from 0 to «:

fAEY=D,+D(E=E)+(E-E,)

¥4

B,
x iA + B\
,Z)l E-E, (E~E.)

M % G
xl’a q=4 [(E+(7 +P7\)2]°

2 -
+ (E—Er) [ dE'
i o

for all A sufficiently large (i.e., L,M,N all sufficiently
large), wherex, E, D, D,, and G,, are constants
described in Sec. [, E;, are the negative bound state
energies of the system described by the potential
V,(x,%), withi=1,2,... N, and B, are constants de-
pending on i, p,, A, A, and £, with ¢=1,2,..-,N;. Here’
we have used the condition E;>—7v?% i=1,2,..«,N", and
the result that given arbitrary disjoint open intervals
§,around E7, i=1,2,---, N, the eigenvalues E;,, i
=1,2,...,N,, are all situated inside the intervals
i=1,2,-+,N,, for all sufficiently large A.°

ImfA(E') 1 < oo
(E'-EY E' -E’ A (4)

Using the expression of the trangition operator in
terms of the potential and the resolvent of the
Hamiltonian, and the eigenfunction expansion of the
resolvent kernel, !'° we obtain

1
B‘A - (Er - E;A)z

7 ' - . _ |z
x 2 ,fdx Vi OET oy 0% )|
where

V=T k%)= [ dx’ V,(x,%)

Xexp(V=T1k;46 - X’), ks =vV=1 k;,
=v=1 VIE},T,

and x{(x), j=1,2,...,J,;,, form the set of orthonor-
malised energy eigenfunctions of the system described
by the potential V,(x,x’), corresponding to the energy
£

tA”

¢ is any unit vector

Using the result mentioned above on the distribution
of the eigenvalues Ej,, i=1,2,...,N;, as A—~«, and
also the following relation, ®

PA(E)‘)A_; P, i=1,2,...,N",
in operator norm, where P,(5 ;) is the projection onto
the direct sum of the characteristic subspaces of the
Hamiltonian operator associated with the potential
v, (x, x’) corresponding to its eigenvalues in the interval
5, and where P, is the projection onto the characteristic
subspace of the Hamiltonian operator associated with
the potential V(x, x’) corresponding to the eigenvalue
E7, we obtain

g B; N B.
2 mT Al FoE
R: - E;, 4= 7 k°-E;

i=1

(5)

uniformly with respect to % in W(s, t), for some sui-
ficiently small {>0, the region inthe 2 plane consisting
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of all points belonging to U (s) and all points in
0=Imk> -~ ¢, where B, are some constants which may
depend on A and E .

The relations (1) and (2) follow from (3), (4), and (5)
by contour deformation in #’ plane, with E’ =k’2,
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Casimir operators of complementary unitary groups*

M. C. K. Aguilera-Navarro

Instituto de Matemdtica e Estatistica, USP, Sdo Paulo, Brazil

V. C. Aguilera-Navarro

Instituto de Fisica Teérica, Sdo Paulo, Brazil

(Received 2 July 1974; revised manuscript received 3 September 1974)

A relationship between all the generalized Casimir operators of complementary unitary groups is
derived, both in the fermion and boson realizations of the corresponding Lie algebras. It is shown
that the number of independent Casimir operators of unitary groups reduces essentially to half the

number for self-conjugate irreducible representations.

1. INTRODUCTION

The notion of complementary subgroups within a
given irreducible representation (IR) of the larger group
is defined by Moshinsky and Quesne in Ref. 1. They
used this concept in applications to the treatment of
many-body forces, the state-labeling problem and the
quasiparticle picture. *?

In this article, we shall consider the one-row IR’s of
‘unitary groups and derive a connection between all the
generalized Casimir operators of unitary complemen-
tary subgroups within those irreducible representations.

In the next section, we give well-known realizations
of the relevant Lie algebras in terms of boson and
fermion operators. The notion of generalized Casimir
operators is given within our adopted convention for the
index contractions,

In Sec. 3, we derive a relationship between all the
generalized Casimir operators of complementary unitary
groups both in the fermion and boson cases.

Some consequences of our results are discussed in
Sec. 4, where we consider the particular case of com-
plementary unitary groups of the same dimension.

The idea presented in this article are being extended
by the authors to other physically interesting groups
such as the symplectic and orthogonal ones.

2. THE GENERALIZED CASIMIR OPERATORS

As is well known, the generators of unitary groups
can be realized in terms of boson or fermion operators.
Here we discuss some aspects of this subject with the
purpose of introducing notation and conventions.

In terms of the boson operators (IL and @” we can con-
struct the following A% operators

Az':(ﬂﬂpli p;plﬁlrz’--'*“v‘

I

2.1)

These operators are generators of the unitary group
in N dimensions, U(¥), inducing one-row irreducible
representations. ®

The index p iabeling the boson (or fermion) operators
will stand for a couple of indices (is), each of them
associated with different subspaces of the original N-
dimensional space. In applications, p may refer to the
orbital characterization of s-particle states or these
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indices may refer to spin—isospin states, just to men-
tion two instances,

With such a splitting of p, we can define two new sets
of operators 4% and A by contracting on s or u, in the
following way:

,

Au':sz_)laﬂsa“'s, u,u'=1,2,...,p, (2. 2)
’

AY =27 al "%, s,s'=1,2,...,7. (2.3)

u=l

The p* operators //“' are generators of the unitary group
{/(p) while the #? operators Aﬁ' generate U(r).

From the commutation relations for the boson opera-
tors, it is easy to see that the generators (2.1), (2.2),
and (2.3) satisfy the following commutation relation:

(X1, X;] = olx} - 8], (2. 4)
where X stands for any of the generators,

Since the operatorsﬂﬁ' and AY commute for all val-
ues of the indices, we see that U(N) contains the direct
product of //(p) and U(r), i.e.,

UM (p)e UF). (2.5)

Now, the one-row IR of U(N) contains only the IR’s
of //(p) and U(+») characterized by the same pattern. 8
Thus, there is a one-to-one correspondence between
the IR’s of those subgroups of U(N), and they are there-
fore complementary within the one-row IR of U(V).

The generalized Casimir operators of //(p) and U(v),
(,, and C,, respectively, are defined by (from now on
we shall use the usual convention that repeated indices
are summed over the whole range of their values)

(/"n:/qi?/'?ﬁ%"'/éjﬂz-% ”:1’27---3/)7 (2-6)
and
Cm:AﬁznA;}---ij-i, m=1,2,...,7. (2.7

In the next section, it will be shown that each (", can
be expressed in terms of the C,’s and vice-versa.

Similarly, we can obtain realizations of the infinitesi-
mal generators of unitary groups in terms of the
fermion operators bf, and b°, In this case, the subgroup
L(pYe. U(r) is embedded in a totally antisymmetric IR
of U(N) and the IR’s of //(p) and U(r) are characterized
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by conjugate patterns. ¢ Again, a one-to-one correspon-
dence is then established sothat //(p) and U(») are com-~
plementary within one-column IR’s of U(N),

In the case of the fermion realization of the relevant
algebras we denote by /), and D,, the generalized
Casimir operators of //(p) and U(r), respectively.
Formally, these invariants are identical to (2. 6) and
(2.7) but, as will be seen later on, the relations among
them are somewhat different from those for (", and C,,.
This difference will provide us with new information,

A few words about the way the generalized Casimir
operators were defined follow. Obviously, we will get
an invariant regardless of the way of contracting all the
indices. For instance, Perelomov and Popov’® and Louck
and Biedenharn® define the invariants by contracting
“up—~down” instead of “down—up” as we did here, i.e.,
they put

Ch=ASLAZ ... A . 2.8)

Clearly, C{=C, and C{=C,, but for » > 2 they are
related through expressions which get more and more
complicated, We chose the “down—up” criterion a
posteriori since the relationships we were looking for
among the invariants led to simpler results.

3. RELATIONSHIP BETWEEN THE GENERALIZED
CASIMIR OPERATORS

In this section, we will derive a relationship between
the generalized Casimir operators of //(p) and U(r). As
the introduced algorithm is the same for both the boson
and fermion realizations of the corresponding algebras,
we shall discuss, in some detail, only the boson case,
limiting ourselves to presenting the results for the
fermion case.

Coming back to the definitions of 4%, AS, (,, and
C, given by Egs. (2.2), (2.3), (2.6), and (2. 8), we see
that we can express the generalized Casimir operators
entirely in terms of boson creation aLs and annihilation
a"® operators in the following way:

— tySmat ros Al By Sy
Cn "auis1a 1 mauzsza ... aumsma mem-1 (8.1)
and
_aT a“msiat a1 .- aT a”m-15m (3 2)
Cm T ®uysyg oSy EmSm . .

As all the indices are dummy ones, one sees that, by
convenient permutations of the a’s, we can transform,
say, (3.2) into (3.1) plus extra terms coming from the
boson commutation relations. In this way, we will get a
relation between C,, and (- Such a naive procedure,
however, turns out to be cumbersome, as can be seen
by just trying to apply it to the m =4 case. To avoid
tedious calculations, we show instead a connection be-
tween the two algebras involved. With the help of this
connection, desired relationship will split out directly,

From the boson commutation relations and the defini-
tions (2, 2) and (2. 3), it is easy to see that

+ B
ausAi’ = att's’/‘]ﬁ -

In the fermion case, this bridge between the two
algebras is given by

(3.3)
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bl By==bleBY. .4)

where 4% and BY are defined as in (2.2) and (2, 3) in
terms of fermion operators.

Now substituting Agr in (2. 8) through its definition
(2.3), we get

C, :a"1smLisI Ai}A?é .. .Azz-i -PAQ"AE .o .A:z-l’
(3.5)
where use was made of the boson commutation relations.

Using the bridge relation (3. 3) and the definition (2. 8),
we can write (3. 5) as

C,, +pC a“tsmaLmA:g- (3. 6)

Next, we apply repeatedly (3. 3) and (2. 8) until all the
A’s are converted to 4 ’s. In this process, no extra term
is generated and (3. 6) becomes

- Spmel 4 b
m=1" - Agn 174:1?

= t o
Cm +pCm_1 =a*15mq m

Bm=1, ., 442
o Sm/ T Bgaq U 74u1-

The algorithm is completed by commuting the re-

maining @’s, The definitions (2. 2) and (2. 6) lead to the
fundamental relation

Cm+1‘)Cm_1 =Cm+7’Cm_1. (3. 8)

The corresponding relation, arising when one uses
the fermion realization of the algebras, is

3.7

Dm_po-iz(_ l)m*l[Dm_me-i]- (3 9)
Now consider the following relation:
m
Corat = (et + 7 = D) 25 (= D)™, (3.10)

which can be proved to be true by successive iterations
of the result (3. 8). However, instead of doing so we
sacrifice elegance in favour of comfort and suppose it
to be true for a given m. Since it holds for m =1 [use
C;=( from the definitions and (3. 8)], we show that it
holds for m +1 also. From (3. 8) we can write

m
0=Cpp+p [CM Lo =D (- p)m-"(,,] = (="t
m+1
=Cpuz = Cmz= r=0) 2 (=)™, (3.11)
where we have introduced the inductive hypothesis into
the brackets. This result shows that (3. 10) is true for
m+1 and, therefore, holds for all m,

For the fermion case, as in (3. 9), the relationship
(3. 10) is affected by phases originating from the anti
rather than commuting character of the fermion opera-
tors. From (3.9), we can similarly show that

m
Doy = (= 1)) oy ~ (HMZJ! (= 1)%p™m),. (3.12)
Clearly, the mathematical symmetry of the problem

allows us to write down, without further details, the
following results:

Crt=Cost (=1, (= P)™C,, 6.13)
and
Dy = (= 1)"Dpg = (7 +£) 24 (= 1)"7™"D,, (3.14)
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So, we have obtained relationships among the gen-
eralized Casimir operators of //(p) and U(r). Particular
cases of these relations have already appeared in the
physics literature, "3

4. DISCUSSION OF SOME PARTICULAR CASES

In this section, we shall consider the particular case
v=p, i,e,, when (/ and U have the same dimension, and
discuss some consequences of the previous results.

First of all, we note that, from the mathematical
point of view, the groups // and U are the same,

Since, in the boson case, the IR’s of // and U are
characterized by the same Young tableau, the eigenval-
ues of the generalized Casimir operators C,, and (",
must be the same, ’ i. e.,

Cn=(me 4.1)

This information is contained in (3. 10) for the factor
¥ —p =0 eliminates possible contributions from the
summation,

Now let us see what we can learn if we consider the
fermion case.

We know that within one-column IR’s of U(N), the IR’s
of /{/ are the conjugates of U. If we further consider
self-conjugate10 IR’s, there will be no significance in
distinguishing between D,, and /),,, so that Eq. (3.14) can
be put in the form

m
[1-(1)"D,. =2 ;2,1 (= pmmmmip, 4.2)

So, all generalized Casimir operators of even order

are given in terms of lower order ones through

m+]

D,= ;21 (= 1)ymrmlymnp - m even. (4.3)

This result reduces to #/2, or (»-1)/2, depending on
whether 7 is even or odd, the maximum number of inde-
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pendent invariants in self-conjugate irreducible repre-
sentations of U(¥).

Indeed, we can derive a stronger constraint than the
one given by (4. 3). Since that relation holds for all even
m, it is easy to see that

D, =vD m even, 4. 4)

Since Dy =k = the number of boxes in the Young tableau
characterizing a given IR of U(»), we see, for instance,
from (4. 4) that -

D, =7h, (4. 5)

m=1»

for self-conjugate IR’s of U(»).
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An exact solution to the Einstein~Dirac equations is presented for a plane-symmetric spacetime
generated by neutrinos. The neutrino field is nonzero and corresponds to a neutrino current along
the symmetry axis of the space. The neutrinos yield a nonzero energy-momentum tensor, which we

specialize to Tj;

= 0 for “ghost” neutrinos. We show that, since the energy-momentum tensor

vanishes, the time-dependent “ghost” neutrino metric reduces to the static case. The time-dependent
“ghost” current is then reduced to the static current through a Lorentz transformation and the
“ghost” wavefunction reduced to the static wavefunction through a spinor transformation. The

“ghost™ neutrino current is geodesic and the spacetime is classified by the expansion, rotation, and
shear of these geodesics. From previous results it follows that our plane-symmetric “ghost” solution is
the most general solution to the Einstein—Dirac equations for a vanishing energy—momentum tensor and

a neutrino current that is expanding. The solution is Petrov type D.

1. INTRODUCTION

In a previous paper® we found the exact solution to the
static, plane symmetric Einstein—Dirac equations. The
interesting results were a vanishing energy —momentum
tensor and a nonvanishing neutrino current. Our solution
is not the most general solution for plane symmetry in
that we have required the solution to be static. It is pos-
sibly this ad hoc static requirement that forces the en-
ergy —momentum tensor to vanish,

In this paper we return to the general case of plane
symmetry and calculate the solution of the Einstein—
Dirac equations for the general case. In Sec. II we pre-
sent the solution to the Einstein—~Dirac equations. The
notation is that of our previous paper. The energy—
momentum tensor no longer vanishes and results in two
cases—T,; is a function of x + ¢ and T, is a function of
x =1,

In Sec. III we consider the special case of a zero en-
ergy —momentum tensor, We find the metric, neutrino
wavefunction, and current for this special case. The
vanishing energy —momentum tensor allows a coordinate
transformation to the static metric.? Since the metrics
are equivalent, one would also expect the neutrino wave-
function, current, etc., to reduce to the static forms.
This we prove in Sec. IV.

In Sec. V we show that the current is a null geodesic
and calculate the shear, rotation, and expansion of the
null congruence.

We define a null-tetrad based on the neutrino cur-
rent and determine the shear, rotation, and expan-
sion in terms of these tetrad vectors,® We also use the
tetrad to obtain the Petrov classification of the space-
time —Petrov type D.

Collinson and Morris* proceed in a different manner
by solving the Neuman—Penrose field equations for
ghost neutrinos. Finally, we show in Sec. V that our
static metric is equivalent to the Collinson—Morris ex-
panding metric through several coordinate
transformations.

Il. GENERAL SOLUTION

We consider the time-dependent plane-symmetric
spacetime defined by

75 Journal of Mathematical Physics, Vol. 16, No. 1, January 1975

ds? = e?(dx? - dt?) + e?*(dy? + dz?), (2.1)
where

u=u(x,t),

v=uv(x,1).
We use the orthonormal Cartan frame

wl=e*dx,

wr=e"dy,

wi=evdz, (2.2)

wi=etdt.

Since the trace of the energy —momentum tensor for
neutrinos vanishes, the Einstein field equations become

2.3)

The nonzero elements of the Ricci tensor are

Ry =exp(-2u)(2u v ,+2u v, =20 % =20 | ~u  +u ),
(2.4)
Ry =Ry =exp(=2u)(v 4 -v 1, +20 2 =20 }7), (2.5)
Ry =exp(=-2u)(2u o ,+2u v, =20 2 =20, +u —u,),
(2.6)
Ry =2exp(-2u)(u v ,+u 0, =0 1, =00 ), 2.7m

where the comma denotes partial differentiation.

We now solve the massless Dirac equation for the neu-
trino wavefunction in the geometry described by (2.1).
The spin coefficients are given by

T, = - du eyt 2.8)
Ty==ze™v y¥ +v y¥%), (2.9)
Ty=-ze™v y¥ +v py?, (2.10)
T,==—su,eyly?, (2.11)

Using these spin coefficients, we find the Dirac equation
becomes

YLy ==, /2 (v +u /2W . (2.12)
This can be simplified to
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X,1= =7y %, 0 (2.13)
where
x =exp(v +u/2)y.
For neutrinos x has the form
X1
w= *2 \ (2.14)
X
X2

In terms of the components of ¥ the Dirac equation yields

X1,1 =Xz,

Xz2,1 =X1,4° (2.15)
The solutions are

X1 =flx +1) + glx - ),

Xo=flx+1) —glx - +c, (2.16)

where f(x +1) and g(x - {) are arbitrary functions and ¢
is an arbitrary constant, We will denote differentiation
with respect to x + ¢ by a prime (’) and with respect to
x -t by adot (+). Also, we define the functions F and
G by
F=2f+c=F, +iF,,
G=2g-¢=G,+iG,, (2.17)

where F_, G, are the real parts of F and G, respective-
ly, and F,, G, are the imaginary parts.

The wavefunction now yields the energy ~momentum
tensor

T, =T,,= bicexpl-2(u + v))(F,F} - F,F. -G G, +G,G,),

(2.18)
T,,= iic expl - 2(u+ 0)(F,F{ = F,F1 + G,G, - G,G,), (2.19)
Ty, = - ificexpl - 2(u+v)l[2(v - ) (F,G,+F,G)

+F!G,~F,G,+FG, -F,G,), (2.20)
T,,=icexpl-2(u+v)l[2(v -u) (F,G, -F,G)
-FiG,+F,G,+FIG, ~F G, (2.21)
T,,= - ticexpl-2(u+v))2(v -u) (F,G, +F,G)
+FG,+F,G,+F|G, +F,G,), (2.22)
T, = 3#icexpl=2(u +v)l2(v -u) ,(F,G, - F,G))
-F!G,~F,G,+FIG +FG,J; (2.23)
and the neutrino current
st = ~expl - (v + W) }(F? + F? = G2 = G?), (2.24)
s?=~2expl- (20 +W)(F,G, - F,G,), (2.25)
s*=~2expl- (2v +w(F,G, + F,G)), (2.26)
s*=expl - (20 +w)(F2 + F2 + G2+ GY), (2.27)

Since R,,, R,;, R,, and R,,, vanish, the field equations
yield

=0. (2.28)
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The fact that the spacetime is plane-symmetric requires

$2=s%=0, (2.29)
From Egs. (2.25), (2.26), and (2.29) we find

FG, -F,G,=0, (2.30)

F,G,+F,G =0, (2.31)

Applying these results to Eqs. (2.20)—(2.23) and (2. 28),
we find two cases:

Case I
G,=G, =0,
F,,F, arbitrary. (2.32)
Case II:
F,=F,=0,
(2.33)

G,,G; arbitrary.

We will discuss Case I and give the results of Case II in
Sec. IV.

The field equations now become

2h
Ry, =" expl-2(v + ) IF3(F,/F,)", (2.34)
R,,=0, (2.35)
R33:0, (2.36)
___ZhK [ 2 ]F2 ,
R“-——?s—exp ~2(v+u)|FX(F,/Fy, (2.37)
2
RM:—Z—;-(-exp[—Z(v +u))F2(F /F)". 2. 38)
Equations (2.35) and (2. 36) yield
e =a(x + 1) +8(x 1), 2.39)

where @ and 8 are arbitrary functions., Subtracting
(2.37) from (2.34) and substituting (2, 35) into this dif -

ference, we obtain
v+2u=A(x+1)+B(x -1, (2.40)

where A and B are arbitrary functions. Substitution of
(2.39) and (2.40) into the field equations yields condi-
tions on A(x + f) and B(x -~ {) which can be written as

A=In(2a’/k) + C(x + 1), (2.41)
B=1n(28/%), (2.42)

where k is a constant and C(x + ¢) is defined by the
integral

2
C(x+t)=26L3K [%(Fi/FT)’d(x+t). 2.43)
The metric is now given by
ds? :é‘—za B(a +8) 2 explClx + H)(dx? - dr?)
+ (o +BNdy? +dz?). (2.44)

This is the most general form of the metric for a plane-
symmetric spacetime which allows neutrinos.

11, “GHOST” SOLUTION (7;; = 0)

Since there are no more equations to solve, we as-
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sume special forms for F, and F,. In the remainder of
the paper we consider the case of 2 vanishing energy—
momentum tensor, or

F¥F,/F,)y =0, (3.1)
We have given the name “ghost” neutrinos to the neu-
trino solutions for which 7,,=0 and refer the reader to
Ref, 1 for a discussion of “ghost” neutrinos. Equation
(3.1) can be satisfied by several choices of F, and F,,
We select

(3.2)
(3.3)

Fr=ay(x+t),
Fi:by(x-%t),

where a and b are arbitrary real constants and y (x + ¢)
is an arbitrary real function of x +¢. Note that the other
choices are either ¢=0or b=0,

Taub? has shown that for a general plane-symmetric
spacetime if the Ricci tensor vanishes (i.e., empty
spacetime), then the metric can be reduced through a
coordinate transformation to the static plane-symmetric
metric given in Ref. 1. Since C(x + ¢)=0 by Eqgs. (2.43)
and (3.1), the general metric (2.44) takes the form
dszz—:—za'é(a +8)/2(dx? — df?) + (@ +0)(dy? + dz?).  (3.4)
The coordinate transformation which reduces this gen-

eral metric to the static form is
2

X1+X4_k[a(x+t)—§], (3.5)
x? ..X4=-2}5[,e(x—t)-§], (3.6)
X2 =%, (3. 7)
X3=12, (3.8)
Performing the transformation, we obtain
ds2 = (kX + 1) /2[(dX1)2 - (dX*)z]
+ (X + D] (dX?)? + (X3, (3.9)

and the metric is the same as the static case presented
in Ref. 1,

IV. "GHOST"” NEUTRINO WAVEFUNCTION AND
CURRENT

Although we have an equivalence between the time-
dependent and static “ghost” metrics, it is not obvious
that the “ghost” wavefunction and current reduce to their
static forms. The wavefunction is

¥, =3 expl= (v +u/2))(a+ib)y(x + 1) ,  (4.1)
and the current is

st = - expl - (2v +w)l(a® + b2 y3i(x + 1), (4.2)

82:0, (4.3)

s*=0, 4.4)
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st=expl - (2v +u)l(a® + b%)y2(x + 1). 4.5)

¥,, s', and s are still arbitrary functions of x + ¢ and
x —t, but they should be transformable to the static form
of Ref, 1.

Up to this point, we have constructed everything with
respect to the orthonormal frame

2, .. -
W =g (@B e + ),

wi=(a +B)?dy,
w3:(a +6)1/2d2,

(4.96)

=2 (aBp e + oy /.
After the coordinate transformation (3.5)—(3.8), we
must construct the new orthonormal frame
WA =(RX* + 1)/ 4 dx?,
W"’:(kX‘ + 1)1/2dX2,
We= (kX + 1)' /2 dX3,
W= (kX' + 1)1 /4dxe,

(4.7)

These two orthonormal frames are connected through a
Lorentz transformation

WE=L *x, D', (4.8)
where
(@’ +8)(@'B)1/2/2 0 0 (a’ - A)(a"3)/%/2
0 10 0
LXx, 0 01 0
(@ =B)@'8)*/%/2 0 0 (@’ +B)(a B)* 17/2
4.9)

In an appendix we show that for zero velocity this
Lorentz transformation reduces to the identity
transformation,

Applying the Lorentz transformation to the current

Sk:L'ksl, (4. 10)
we find
. Rk - 2x+t ;
Sf:i(a +8) a/‘*(az+b2)‘f—((’;—7—l(-511 +87,). (4.11)

If this current allows the same timelike Killing vector
as the static metric, we must have

ylx+ 1) =2k (2a'/ k)12, (4.12)

where %, is an arbitrary real constant, The current

becomes

ST =4|c|2(RX* +1)/ -5 +8'), |c|?=k(a?+b?).
(4.13)

This is the “ghost” neutrino current in the W, frame and
is in the static form of Ref. 1. Note that S’ is a null vec-
tor as is required for neutrinos,

The wavefunction is transformed through a spinor
transformation defined by
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S=explyly?6/2), (4.14)
where

tanhf=v/c, (4.15)
and

‘IIV = Swu' (4- 16)

Using the ¢ from the Lorentz transformation {4, 9) and
the requirement (4.12), we obtain

1

. 1
\I’v:C(kX1+1)3/8 . y
7

c=k(a+ib). (4.17)
i
This is also in the static form as given in Ref. 1.
In Ref. 1 we found two solutions for the wavefunction
and current, One of these solutions is given by (4.13)
and (4.17). By choosing Case II in Sec. I (i.e, F,=F,

=0), we obtain the other solution. Namely, the wave-
function is

¥, = c(kX! +1)73/8 , (4.18)

and the current is

Si=4|c|2(RX? +1)3/457, +5%), (4.19)
with the requirement
olx — 1) =2k, (28/ B}, (4.20)

which arises in the same way as (4.12), o(x - {) is an
arbitrary function of x - such that

G=(a+ib)olx —1). 4.21)
V. EXPANSION, ROTATION, SHEAR AND
CLASSIFICATION

Since everything in our “ghost” solution can be re-
duced to the static solution through transformations, we
will consider the static current, The static current S/
obeys the equations

Si,S'=x4|c|?R(RX* +1)2/287, (5.1)
in the coordinate basis defined by

0
Ey=z57.

(5.1) shows that S! is the tangent vector to null geode-
sics. Changing to an affine parameter results in a new
form for the current

.2 ; :
§i=7 (kX +11/2(% 6%, +67). (5.2)

Using the notation of Sachs,® we find the following in-
variants for these null geodesics

(5.3)
(5.4)

Expansion: 6=(kX*+1)1/2

Rotation: w=0,
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and
Shear: |o|=0. (5.5)

A null-tetrad based on the current (5.2) is given in the
orthonormal frame (4.7) by

2
lj:;(kxwl)l/‘*(—c;—é‘}),
k 1 “L/4(s1 4
nf:Z(kX + 1) 45} - 59, (5.6)
1.
mjz—ﬁ(léjz-*-ﬁja),

1
my= =75 (=18, +5,%).

In terms of Newman—Penrose spin coefficient formal-
ism® we find

Expansion: 6=-(p+p5)/2,

6= (kX +1)2/2 (5.7)
Rotation (twist): 2w?=—(p -p)?/2,
w=0, (5.8)
and
Shear: |o| =(0B)'/2,
lo] =0, (5.9

where p and ¢ are defined in terms of the null-tetrad
vectors and, explicitly,

p:f):—(le-f-l)-l/z, (5. 10)

The space—times are classified by Newman and
Penrose according to the nonvanishing of the quantities
¥, ¥,, ¥,, ¥,, and ¥, which are contractions of the
Weyl tensor with the vectors of the null-tetrad. We find

Vo=V, =¥,=¥,=0, (5.11)

and

2
W= = et 1), (5.12)

This implies that the spacetime is Petrov type D with
propagation vectors [, and n,.

Griffiths has shown that ghost neutrinos are either
Petrov type D for nonzero expansion or Petrov type N
for zero expansion.® Collinson and Morris have integrat-
ed the Newman—Penrose field equations to determine
the metric for ghost neutrinos. * This result for the case
of nonzero expansion is

0 -1 0 0
i -1-2/y 0 0

- 3

0 0 2/ O

0 0 0 2/43
which is Petrov type D. Note that we have changed the
signature in order to conform with our convention. After
a reflection we perform three coordinate
transformations:
x==(x"+7y),

(5.13)

y={(x"+3y" 12,
z2=V2z",
t=V2t,

(5.14)
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then
X =x',
- (5.15)
2" =z,
t=y’,
and, finally,
XL Xi=v2(x"" +1" = 1),
x _X4=_7}2_(x"—t"+%), (5.16)
X2=y",
X3=z".

The transformation (5. 14) reduces the metric (5.13) to
diagonal form. The transformation (5.15) then redefines
the timelike coordinate. Finally, the metric is brought
to the form of our static metric with #=v8 by the trans-
formation (5.16). Hence, our “ghost” solution is the
most general solution to the Einstein—Dirac equations
for expanding ghost neutrinos.

VIi. CONCLUSIONS

We have found the general solution to the Einstein—
Dirac equations for the case of a plane-symmetric
spacetime and discussed the special solution having a
zero energy —momentum tensor. The special solution is
the same as in the static case and in particular has the
same “ghost” property. The “ghost” solution is in fact
the most general solution to the Einstein—Dirac equa-
tions for a vanishing energy —momentum tensor and a
neutrino current that is expanding.

We have also shown that the static cylindrically-
symmetric metric allows the expanding ghost neutrino
solution.” It would be interesting to know all symmetry
types that allow both the expanding and nonexpanding
ghost neutrino solutions. Of course, if a spacetime al-
lows expanding ghost neutrinos, it reduces to the plane-
symmetric metric as in Ref. 7. Many different symme-
try types could, however, still allow ghost neutrinos,
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APPENDIX

As a check on our Lorentz transformation (4.9), we
can let v go to zero. The W! frame should then reduce
to the w' frame. Solving for v/c, we find

v/c=(a’ =)/ (a’+p)=0. (A1)
Integration yields

a=c(x+1)+c,, (A2)

B=c,(x =t)+ ¢, (A3)

where ¢,, ¢,, and c,; are arbitrary constants. Substitut-
ing these into the coordinate transformation (3.5)—
(3.8), we obtain

X‘+X“=%[cl(x+t)+cz—1/2], (A4)

xt —X":%[cl(x —-f)+¢,~1/2], (A5)

X2=y, (A6)

X3=1z, (A7)
Now, if we let

c,=k/2, (A8)

c,=c,=1/2, (A9)

then the two coordinate systems (and frames) are equal.
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Neutrinos in cylindrically-symmetric spacetimes

Talmadge M. Davis and John R. Ray
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An exact solution to the Einstein—Dirac equations is presented for a static, cylindrically-symmetric
spacetime. The neutrino field is nonzero and corresponds to a neutrino current in the radial
direction. The neutrinos yield a zero energy-momentum tensor and therefore the gravitational field is
the same as for the vacuum case. The neutrinos in these static cylindrically-symmetric spacetimes

can exist only if the spacetimes are locally equivalent to static plane-symmetric spacetimes. This type
of “ghost neutrino” solution is already known to exist in plane-symmetric spacetimes.

. INTRODUCTION

We will be considering solutions to the Einstein—
Dirac equations in spacetimes which are static and
cylindrically-symmetric where the metric is defined by
ds?=exp[2(v = A)|(d¥® —dt?) +exp(-22) P dp® +

+expl2(x + u)]dz?, (1.1)

where v, A, and u are functions of » only as are all
other functions. We shall carry out the calculations in
the Cartan orthonormal frame defined by

w!=exp(v -A)dv, (1.2)
wi=exp(-A)rd¢, (1.3)
w*=exp(r + p)dz, (1.4)
w*=exp(v - \)dt. (1.5)

In Sec. I we solve the Dirac equation for massless
particles

Yiw;i=0,

for the neutrino wave function which is required to have
the form

(1.6)

1
p=[ 2= ). (1.7)
iy
i),
Using this solution, we find the energy—momentum ten-
sor and apply it to the Einstein equations
8k
Ry = = Tij,

1

(1.8)

in Sec. III. Solving these equations gives v, A, and u as
functions of 7. It also restricts the metric to only one
specific form which, we show, is the same as in static
plane-symmetric spacetimes. For our notation we
refer the reader to our previous paper.!

I1. SOLUTION OF THE DIRAC EQUATION AND
THE ENERGY-MOMENTUM TENSOR

The nonzero spin coefficients I'; are given by

T,=%exp(r =) (1/7 =x ) ¥*Y%, (2.1)
Ty=3exp =) (X, + 1 )¥'Y5, (2.2)
(2.3)

r4:%exp(7\ -v) (>\,1 - V,l) ')’1')’4,

80 Journal of Mathematical Physics, Vol. 16, No. 1, January 1975

where the comma denotes differentiation with respect
to ». The Dirac equation becomes

Y, +5(1/r+v  tu =2, )=0, (2.4)
with the solution
’JJ:%(”/VO)_I/ZEXP[— v+ -], (2.5)

where i, is a constant spinor and 7, is an arbitrary
constant.

The nonzero components of the energy~momentum
tensor are

T23: %h_gexp(x—V)(zx,l_*'“,l'l/y)w* st)’ (26)
Topu= %9 exp(x = v) (v, = 1/7) 4% ' %, (2.7
T34:i4ﬂexp(h—V)(V,l—z’\,l)w* 7'y (2.8)

All other components vanish identically or via the Dirac
equation,
tll. THE EINSTEIN EQUATIONS

For the static metric with cylindrical symmetry the
only nonzero components of the Ricci tensor R;; are

Ry, =-expRA=v)](v ;i =x n+20 2= /7

—V,1/7+3H,1>\,1+IJ,12+U—,11—V,1“,1); (3.1)

Ry = —exp[2(x - V)](—K,l/y + .U,1/'V-7\,11 —X, k),
(3.2)

Ryy=— eXp[Z(K— V)]()\,u +>\,1/7’ gt “,12 TA L H
+u,,/7), (3.3)

Ry = eXp{Z(K— v)] (V,u —-An ")\,1/7' + V,x/'V LY

~ A1 u,l)- (3.4)

Since the diagonal components of the energy —momentum
tensor all vanish, the Einstein equations yield

R;;=0 (no sum on ). (3.5)

These are the vacuum field equations which were first
solved by Weyl and Levi-Civita.? We will use the solu-
tions as given by Witten®;

M= 0, (3 . 6)
v=d?ln(v/7,), (3.7)
Copyright © 1975 American Institute of Physics 80



x=dln(r/7), (3.8)
where d and 7, are arbitrary constants. The nonzero
components of the energy—momentum tensor now

become
ific

Ty = g~ (/7)™ d -1)4* ¥y, (3.9)
Tz4=if7c(r/%)"'“’2 (d® = 1) ¥* ' 2%y, (3.10)
Tas= % (/1) d(d - 2) *9* Y. (3.11)

These must vanish since R,; =R,,=R;, =0, resulting in

a nonzero neutrino wavefunction only when
d=%.

(3.12)

Setting d =3 causes T,, to vanish, whereas the vanishing
of T,, and T,, force the neutrino wavefunction to have
the form

(3.13)

where ), is a scalar.

Substitution of Eqs. (3.6), (3.7), (3.8), and (3.12)
into the solution (2.5) yields

1
d=alr/r)>/® *; , (3.14)
+7
where a is an arbitrary complex constant.
The neutrino current density
st=ipTyRy, (3.15)
is
st =4]a|?(r/ry) /4 (¥ 6%, + &%,). (3.16)

This corresponds to a flow of neutrinos in the radial
direction.

Substituting d =% in the metric, we find it takes the
form

ds® =(v/7e) 2 (@r® = dt®) +(v/7,) (7’ d¢p* +dz%). (3.17)

The coordinate transformation

kxt+1=7/7, (3.18)

=y, (3.19)

P=z, (3.20)

x4:[’ (321)
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transforms the metric to

dSzI(kxl +1)-1/2[(dx1)2_(dx4)2] +(kx1 + 1) [(dxz)z

+(dx%?), (3.22)
where we have set
k=1/7,.
The wavefunction is transformed to
1
p=alext +1)079f 1 (3.23)
»

Thus, we have exactly the same metric and wavefunction
as in the static plane-symmetric case discussed in a
previous paper.' We refer the reader to Ref. 1 for a
discussion of this “ghost neutrino” solution together
with a comparison with other solutions to the Einstein—
Dirac equations.

1V. CONCLUSIONS

We have presented an exact solution to the Einstein—
Dirac equations for static cylindrically-symmetric
spacetimes. The only neutrinos allowed have the “ghost”
property of a vanishing energy—momentum tensor. Not
only are these neutrinos “ghost” neutrinos, but they
exist only in static cylindrically-symmetric spacetimes
which are locally equivalent to static plane-symmetric
spacetimes.

It has been proven by Madore® that in static, axially
symmetric spacetimes the neutrino energy —momentum
tensor vanishes. However, it was not pointed out that
the wavefunction and current do not vanish. Griffiths®
has shown that all Einstein—Dirac solutions which have
a vanishing energy—momentum tensor are of Petrov
type D or N, The spacetime presented here is type D.
The general form of the metric for ghost neutrinos has
been given by Collinson and Morris.® We have shown
that our plane~symmetric ghost neutrino solution is equi-
valent to the type D solution obtained by Collinson and
Morris.”
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Canonical transformation and accidental degeneracy.
lll. A unified approach to the problem
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We continue the discussion of the groups of canonical transformations responsible for accidental
degeneracy in quantum mechanical problems. A general unified treatment is provided for a wide class
of two-dimensional physical systems, having an energy spectrum which is a linear combination of two
quantum numbers. The general method involves the use of both nonorthonormal and orthonormal
sets of states to construct groups of complex or real canonical transformations, mapping the problem
under consideration onto the two-dimensional isotropic harmonic oscillator. The group responsible for
the accidental degeneracy is then quite obviously S U(2). The problem of an isotropic oscillator in a
sector m/q (g integer) was discussed previously using a nonorthonormal basis. In the present paper
we carry the analysis in an orthonormal basis to establish the general procedure mentioned above.
We also analyze in detail the Calogero problem for three particles which has a spectrum of the type

given above, and obtain explicitly the canonical transformation that maps it on the anisotropic
oscillator whose ratio of frequencies is 2/3 and subsequently on the isotropic one.

1. INTRODUCTION AND SUMMARY

The purpose of this article is to continue the system-
atic study of physical systems (both quantum mechanical
and classical) with “hidden” or “dynamical” symmetries
that was initiated in the two previous articles of this
series. % In particular we wish to provide a unified and
general approach to the analysis of all such systems.

Specifically in this paper we consider nonrelativistic
systems, described by a Schrddinger equation or a
classical equation of motion, with a local potential
V(x,, x,) that is time and energy independent and which
is a function of two variables only, with an energy
spectrum of the type

E v=Clkn+RN)+D. (1.1)

Here C and D are arbitrary real constants, k; and k,
relatively prime integers, and n and N arbitrary inte-
gers. This type spectrum includes all two dimensional
physical systems with accidental degeneracy that have
so far occurred in the literature, !~°

As shown in the previous papers of this series''? this
set of energy levels can be split into subsets that show
explicit accidental degeneracy. For this we only need
to write

n=Fkn,+x;, N=kmn,+x;, 3;=0,1:--2,-1, i=1,2,

(1.2)

and, substituting in (1.1), we get

1;;:;,;2‘ = ChRyRy(n, + ny) + Cllgh, + Bya,) + D, (1.3)

Thus the k;2, subsets characterized by the pair of num-
bers (A;1,) have accidental degeneracy of the familiar
type that we associate with the two-dimensional
isotropic oscillator.?

We shall argue that for any such system it is possible
to construct an algebra of invariants of motion trans-
forming wave functions corresponding to a definite ener-
gy level irreducibly among themselves. What is more,
it is possible to construct the group of canonical trans-
formations, generated by the above “dynamical in-
variance algebra”, through the mapping of the problem
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under consideration onto the two-dimensional isotropic
harmonic oscillator. The group responsible for the
accidental degeneracy and other interesting features of
the system is then simply the SU(2) group of the
isotropic harmonic oscillator.

More generally, all known physical systems showing
accidental degeneracy'~® (the hydrogen atom, ° the
isotropic harmonic oscillator, * the anisotropic harmonic
oscillator, '** the harmonic oscillator in a sector,? the
linear three-body problem with two-body potentials
proportional to the square and inverse square of the
distance, i.e., the Calogero problem® and many others”)
have several features in common. Among these features,

which account for the physical interest of these
problems, we have the following:

1. The energy spectrum for the quantum mechanical
problem demonstrates “accidental” degeneracy, i.e.,
a degeneracy not associated with any obvious geometri-
cal symmetry group.

2. The corresponding classical motion is nonergodic;
in particular, all finite trajectories are closed.

3. The Schrodinger equation can be solved explicitly
and analytically in terms of known functions and so can
the corresponding classical equations of motion. All
relevant partial differential equations allow the separa-
tion of variables in at least one coordinate system.

4. A dynamical invariance algebra can be constructed,
i.e., a Lie algebra of operators, commuting with the
Hamiltonian, such that the wavefunctions of the system
corresponding to a given energy level transform among
each other according to irreducible unitary representa-
tions of this algebra. The operators forming a geometri-
cal invariance algebra are of first order in the deriva-
tives” (first power in the momenta); those of a dynamical
algebra include higher order derivatives (powers of the
momenta larger than one).

5. The invariance algebra can be extended to a “dy-
namical noninvariance algebra,” containing in addition
to the invariance algebra further operators, acting as
raising and lowering operators for the energy, i.e.,
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transforming wavefunctions corresponding to one energy
into those corresponding to a different energy.

6. It is possible to construct a group of canonical
transformations, generated by the dynamical invariance
algebra, which is directly responsible for the accidental
degeneracy and other features of the problem. Point
transformation groups, involving particle coordinates
only, are generated by the geometric invariance algebra
(first order derivatives in the operators). Canonical
transformation groups, in which the new coordinates
and momenta are functions of both the old coordinates,
and momenta preserving the commutation relations
(Poisson brackets) are generated by the dynamical in-
variance algebra (second and higher order derivatives
in the operators).

A unified and systematic approach to accidental de-
generacy problems should, according to our opinion,
involve two aspects:

I. Provide a general method for finding physical
systems with some or all of the properties listed above.

II. Provide a general method for constructing the
dynamical invariance algebra of the problem and the
group of canonical transformations responsible for the
accidental degeneracy, once the system itself has been
found and the degeneracy of the energy levels
established.

The first aspect was considered in Refs. 7 where all
two-dimensional potentials V(x,, x,) were found for which
the Schrodinger equation allows an invariance algebra of
operators that are at most quadratic in the momenta.
The same problem has also been studied® for three-
dimensional potentials V(x,, x,, %,).

The present series of articles is mainly devoted to
the second aspect of the problem, namely the construc-
tion of the group of canonical transformations explaining
the accidental degeneracy. In this paper we illustrate
the general method of tackling the problem through the
analysis of the Hamiltonian introduced by Calogero.® As
a first step in this analysis we again discuss the canoni-
cal transformation that maps the anisotropic oscillator
whose ratio of frequencies is rational on an isotropic
oscillator. This problem was discussed in Ref. 1, but
in Sec. 2 of the present paper we perform the analysis
using a nonnormal set of states. This simplifies the
procedure for obtaining the canonical transformation
mentioned above.

Once the previous point is achieved, we can tackle the
problem of finding the canonical transformation that
maps any physical system whose spectrum is given by
(1.1) into an anisotropic oscillator whose ratio of fre-
quencies is k,/k,. The procedure involves the following
steps:

(i) Find the ground state solution |0) of the Schridinge
equation.

(i) Construct two independent raising operators a*, A*
such that a complete set of eigenstates of the Hamiltonian

can be written as
[nNY=(rINTY/2 (@) (A7)¥ |0). (1.4)

In general this set of states will be nonorthonormal as
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seen for example in the sector problem discussed in
Ref. 2,

(iii) Construct the lowering operators 5, A which will

be canonically conjugate to a*, A*, i.e.,
[@,a']=14,4]=1, [a,A]=[4,a]=0, (1.5)

but, in general, not Hermitian conjugate. From (1.4},
(1. 5) it follows that

@ |nNY=(n+1)Y? [n+ 1 N), (1. 6a)
A*nN)=(N+ 102 [n N+ 1), (1. 6b)
a|nNy=n'"2n -1 N), (1. 6¢)
A|nNy=N2{p N = 1), (1. 6d)

and thus the Hamiltonians of the system whose spectrum
is given by (1. 1) is proportional to

ki3 + k,A*A + (D/C), (1.7)

which, in terms of the variables a*, A*, @, A satisfying
(1. 5), implies that we have an anisotropic oscillator
whose ratio of frequencies is (k,/k,).

(iv) Introduce the usual definition of raising and low-
ering operators in terms of coordinates and momenta,*
We have then the canonical transformation that maps
the physical system whose spectrum is given by (1.1)
into an anisotropic oscillator whose ratio of frequencies
is (ky/k,).

Steps (i)—(iv) where actually followed in Ref. 2 for
the problem of anisotropic oscillator in the plane re-
stricted to move in a sector of angle n/q with g integer:
As indicated in that reference, since @, A are not the
Hermitian conjugates of a*, A*, the canonical trans-
formations mentioned in (iv) are in general complex.
This raises the question of how the classical orbits
would transform under them. This problem, together
with others, ? suggests the importance of carrying out
the analysis outlined in steps (i)—(iv) also for an ortho-
normal basis, and this requires further steps that we
proceed to enumerate.

(v) Determine the orthonormal basis of the problem
which depends on two quantum numbers which we still
designate by n, N. The corresponding states will be de-
noted by the angular ket [#N) rather than by the round
one |nN) of the nonorthonormal basis (1.4). These or-
thonormal states will be eigenfunctions of the
Hamiltonian H and the other integral of motion of the
problem which we designate by M? as its spectrum turns
out to be positive in the examples to be discussed below.

(vi) Apply to the orthonormal states |uN) the operators
a’,A”. We expect in general that we get linear combina-
tions of these states corresponding to the raised energy
rather than the simple expressions (1. 6a, b). We proceed
to show though that in many cases we can find new oper-
ators, which we designate by Zz‘, A*, which are functions
of a*, A", H, M? and their commutators, that when ap-
plied to the orthonormal basis |#N) behave as raising
operators in the sense (1. 6a, b).

(vii) As we are now dealing with orthonormal basis
the lowering operators a, A are then just the Hermitian
conjugate of @', A* and at the same time they are canoni-
cally conjugate. The Hamiltonian of the system whose
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energy spectrum is given by (1.1) becomes then
proportional to

Py @G+ Ry ATA +(D/C), (1. 8)

which again indicates that we are dealing with an aniso-
tropic oscillator whose ratio of frequencies is (k,/k,).

(viii) Introducing for a*, A*, a, A the usual definition
of raising and lowering operators in terms of coordinate
and momenta, * we would have then the veal canonical
transformation that maps the physical system whose
spectrum is given by (1. 1) into an anisotropic oscillator
whose ratio of frequencies is (k,/k,)

(ix) Once we achieved the step indicated in (viii) we
can use the analysis developed in Ref. 1 to map the
Hamiltonian (1. 8) onto an isotropic harmonic oscillator.
Thus the dynamical symmetry group of a physical system
whose spectrum is given by (1. 1) is then a certain
realization of SU(2).

In Sec. 3 of the present paper we implement steps
(v)—(ix) for the case of a particle in an isotropic two-
dimensional harmonic oscillator potential constrained
to move in a sector of angle 7/q with ¢ integer. Com-
bining this with the discussion of Ref. 2, we see that
the full set of steps (i)—(ix) has been implemented for
the sector problem. We are then in a position to extend
the analysis to the Calogero® problem. Steps (i)—(iv)
can be carried out using the nonorthonormal basis in-
troduced by Perelomov.® Steps (v)—(ix) are performed
by a procedure entirely parallel to the one used for the
sector problem.

Once step (ix) is also implemented, we can explicitly
construct the generators of the Lie algebra of the SU(2)
symmetry group of the problem. They will be of course
complicated functions of operators such as H, M?, but
this is not important as the latter are diagonal in the
basis |nN). Thus the generators of SU(2) must be under-
stood in the weak sense, i.e., as operators that are
well defined only when acting on the basis |nN).

We proceed then to implement the above analysis

starting with the discussion of the anisotropic oscillator
in the nonnormal basis.

2. THE ANISOTROPIC OSCILLATOR IN A
NONNORMAL BASIS

Before analyzing in a nonnormal basis the anisotropic
oscillator whose ratio of frequencies is

(wl/wz) = (kz/kl);

where 2,, k, are two relatively prime integers, we con-
tinue the discussion of Ref. 1 to obtain information on
action and angle variables.

(2.1)

As was shown previously! the canonical transforma-
tions that map the anisotropic oscillator in to an iso-
tropic one affect independently the coordinates and
momenta (x,, p;)and (x,, p,) of the two degrees of free-
dom. We can therefore suppress the indexi=1, 2 as-
sociated with them and discuss the problem of a particle
in a one-dimensional oscillator whose mass is unity and
whose frequency' is k™ with % integer, i.e., the
Hamiltonian

H=3(p" + k724, (2.2)
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The action and angle variables for this problem®° gre
J=kH = 5kp® + k7'x?), (2.3)

which clearly are canonically conjugate as the Poisson
bracket is unity, i.e.,

dw oJ dw dJ

w = - ang tan(kp/x),

(2.4)
We differ from the standard literature'® by suppressing
a factor 27 in J and a corresponding factor (27)! in iw.

By introducing the usual definition of creation and
annihilation variables

n=(1/v2 ) (B2 =ik ?p), £=(1/VZ)Y(R™/2v+ik"/?p),

(2.5)
the action-angle variables take the form
J=n¢, (2. 6a)
w=-(i/2)In{n/£), (2.6b)
and, inverting this last relation, we obtain
n=dJ2 exp(iw), (2.7a)
£ =J2 exp(~ iw). (2. 70)

We now consider the canonical transformation of
Ref. 1 that maps an oscillator of frequency % into an
oscillator of unit frequency. In terms of the annihilation
and creation variables it takes the form*

n,:_,k-l/zn(la-k)/z E(l-k’/z’ (2‘83.)

g =Ry m R gl e, (2. 8b)
The new action-angle variables given by

J=10¢, (2.9a)

w =—(i/2)In(n' /&), (2.9p)

are related to the old ones of (2. 8) in the simple fashion
J =k, (2.10a)

w' =kw. (2.10b)

The canonical transformation (2, 8), when written in
the approrpiate quantum form,® provides the creation
and annihilation operators that act on the subsets of

normalized states
[n), = [nk + 212 et | 0), (2.11)

where |0) is the ground state of the oscillator and A,
which characterizes the subset,! takes the values
A=0,1,2, - k=1,

As shown in Ref. 1 the operator form of ', £ corre-
sponding to (2. 8), when acting on the states |n),, gives

(2.12a)
(2.12b)

7 |n>x:(n+ 1) 5+ 1),
g |n>A:nl/2Jn— 1),.

Instead of the normalized set of states (2.11) we could
have taken the nonnormalized one defined by

|n), = (n1) /2™ 0), (2.13)

which we denote by a round ket to distinguish them from
the angular ket (2. 11). For these states it is immediate-

1y clear that we could take as creation operator
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n” :nk (2. 143.)
since
W 0y, =+ 1% [n+1),. (2.15)

What is the corresponding annihilation operator £” ?
From the commutation rules [£”,77]=1, [£,7]=1it
suggests itself that we put £ =3/0n”, £€=20/9n, and thus

" a__dn_”-l-a_—'ll‘k
Y= *(dn> RS
We easily check that the classical Poisson bracket of

n” and & is {n", E”}:i and thus £” is the annihilation
variable! corresponding to n”. The quantum mechanical
operator® has a different form for each subset of non-
normalized states (2. 13) characterized by 1. In fact, by
a similar reasoning to the one carried out in Ref. 1 for
the normalized states, we see that the quantum mechani-
cal operator corresponding to (2. 14b) has the form

(2.14b)

& =k TR (nE = 2), (2.16)
as for each subset A=0,1,:--, k-1 we have
g [n), = ()2 |n-1),. (2.17)

The analysis of the last few paragraphs indicates that
it is quite simple to find the canonical transformation
(2. 14) that provides, when we pass to the quantum pic-
ture, the raising and lowering operators that act on the
subsets of nonnormalized states (2. 13). There is,
though, one serious drawback, While 7', £ are conjugate
to each other in the complex variable sense, i.e., from

(2. 8) we see that
go=nt, (2.18)

this is no! the case for n”, £”. Thus we have for the non-
normalized set of states (2.13) a canonical transforma-
tion (2. 14) that is no longer real,’ i.e., had we defined
x”, p” by the relations

n// :(1/‘]_2—) (X” - ip"),
& =(1/V2) (" +ip),

(2.19a)
(2.19b)

corresponding to an oscillator of frequency 1, x” and p”
would not be real functions of x, p though their Poisson
bracket is still 1 and thus they are canonically conjugate.

This puzzle appeared already in the sector problem of
Ref. 2 where when acting on a nonorthonormal basis we
were also led to a complex canonical tranformation,

We can solve the puzzle in the present one-dimen-
sional oscillator problem in a simple way. Rather than
defining x”, p” through the relations (2. 19), we go first
to the action and angle variable associated with 1", £”,
i.e.,

J” =g, (2. 20a)
w” =~ (i/2) In(n"/£"). (2.20b)
From (2. 14a, b) we see that
I =kMe=k"Y, (2.21a)
w” == (i/2)In[k(n/£)*(nE)*]
(2.21b)

— kw — (i/2) In(kJ*™Y),

As the original action-angle variables J, w are real,
we see that J” is real while w” is complex. But the
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imaginary part of w” is a function of J alone and thus its
Poisson bracket with J”, which is proportional to J, is
then zero. Thus while w” is canonically conjugate to
J”, it is also clear that if we just take the real part of
w”, i.e., kw, this would also be an angle variable cor-
responding to the action variable J”, But from (2. 10)
we see that

I =, (2. 22a)

Rew” =w’, (2.22b)

and thus, if we had restricted ourselves only to the real
part of w”, we would have the action and angle variables
associated with an orthonormal set of states from which,
by a formula similar to (2. 7), we would have obtained

7', £ which are complex conjugate to each other. Finally,
by defining x’, p’ by an expression of the type (2. 19),

they would be veal functions of x, p that are canonically
conjugate and represent the canonical transformation
that maps the oscillator of frequency & into an
oscillator of unit frequency.

We have thus shown how to derive the real canonical
transformations required by our problem by first ob-
taining the complex ones which are associated with a
nonnormalized basis.

We will consider also another procedure, related to
the quantum picture, of deriving 7', £ once we know
n”, & . As we mentioned in (2. 15) n”, when acting on the
nonnormalized subsets of states ln)A behaves as a crea-
tion operator. What happens when we apply n” to the
normalized set of states |2),? From (2.11) and (2. 14a)
we see that

0 |y ={l(n+ D+ A]1/(nk + )12 [n+ 1), (2.23)
The operator n£ when applied to the state (2. 23) gives

Mmem” |, =nefl(nk + 1)1/ 2plimDeat i gyl (2.24)
=[(n+ e +x]n" |n),,
and thus from (2.23) we can write
[(mE)nE = 1)~ (& =+ DIV 2R2(ne - 3)20% ),
(2. 25)

=(n+1)"2 |n+1),,
where the operator in the left-hand side acting on 1n),
is exactly the raising operator (4. 2a) of Ref. 1. To pass
now to the classical picture, we use the correspondence
principle. As n¢ is the number operator, we consider
only cases in which n¢ are large so that all the integers
in the operator on the left-hand side of (2. 25) can be
disregarded as compared to nt. We have then that the
operator becomes the dynamical variable

EL/Z () R /2 gk el /2 G 12 g4 /2, (2.26)

which coincides with 7" of (2. 8a). For & we just need to
consider the relation £ =n'* to obtain (2. 8b).

Thus, by applying to the normalized basis the raising
operator of the nonnormalized one, we can obtain by
the above reasoning the raising operator of the nor-
malized basis. Using then the correspondence principle,
we can obtain the classical canonical transformation

that maps the harmonic oscillator of frequency %! into
another one of frequency 1.

Returning now to the two-dimensional anisotropic os-
cillator whose ratio of frequencies is rational, all we
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have to do is to add to the variables appearing in the
equations x, p, n, &, etc. an index i=1, 2 that corre-
sponds to the two degrees of freedom. In this way we
have the normalized and nonnormalized states

'n1nz>l112: |n1>x1 in2>>\2, (2.27a)
ENSNNESURNRIANS (2. 27h)

The generators of the U(2) group that connect all states
in these two basis are respectively

n; &%

L4
7],' i

(2. 28a)
(2. 28b)

where 7/, ¢, are the quantum mechanical operators
given in Ref. 1 while 0] and &7 are given respectively by
(2. 14a) and (2. 16), where an index i or j has to be added
to all variables.

i,j=1,2,

If by the generators of the Lie algebra of the group
responsible for accidental degeneracy we understand
those operators that connect all states of the same ener-
gy, it is irrelevant whether we work in a normalized,
or more generally orthonormalized basis, or if it does
not have this property so long as it is complete. But
when we look at the problem in the classical picture, we
would like to have real canonical transformations whose
effect on the orbits in phase space we understand. Thus
it is convenient that if we originally obtained our results
on a nonorthonormalized basis because it turned out to
be simpler, we also derive later the results for the
orthonormalized one for which the canonical transforma-
tion is real.

In Ref. 2 we discussed completely the symmetry group
of canonical transformations for the problem of an
isotropic oscillator in a sector of an angle 7/q¢ with ¢
integer, for a nonorthonormalized but complete set of
states. In the next section we shall discuss the same
problem when the basis is orthonormalized and in the
process establish a procedure which seems applicable
to all problems whose spectrum has the form (1.1).

3. THE PROBLEM OF AN OSCILLATOR IN A
SECTOR WHEN THE BASIS IS ORTHONORMAL

As in Ref. 2, we shall express the orthonormal and
nonorthonormal states in terms of powers of creation
operators acting on the ground state. As shown there,
these operators take the form

n,=(1/¥2)(x, - ip,), (3.1)
where

X, =(1/V2) (%, 2 1), (3. 2a)

b =(1/V2) (P, £ ip,). (3. 2b)

The orthonormal states are then given by the angular ket?

|y = ! [+ (N + 1)1} /2 271/ 2( g Y@ M) _ et ¥ gy,

(3.3)
while the nonorthonormal will be designated by the
round ket”

[N) = [N 2 )0, 0+ 1.9 (.0 = 0.9 [ 0). (3.4)

These states were taken from Ref. 2, but for conve-
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nience in the later developments we replaced v,, v,
appearing there by n, N,

If we define now the operators

at=nnmn., (3. 5a)
Ar=n 24 (3. 5b)
we immediately see from (3. 4) that
a*|nN):(n+1)1/2‘n+1N), (3. 6a)
A |aN)=(N+1)*%|n N + 1), (3. 6b)

and thus a*, A* are the creation operators for the non-
orthonormal basis.

As discussed in Ref. 2 (where we denoted a" by n,
and A* by 7,), the annihilation operators for the non-
orthonormal basis are not the Hermitian conjugate of
the creation operators. Designating these annihilation
operators by a, A we can symbolically? express them as

a= ﬁ R (3.7)
da A
and thus, using (3.5), we obtained?
A=MrtE - E) -9, (3. 8a)
A=(n,8, ~n.£)q7 1=, (3. 8b)
where we employed the symbolic relation
afh = = —\é—(xx +ip.). (3.9)
From (3.4) and (3. 8) we immediately see that
a|nN)y=n'%n-1N), (3.10a)
AlnN)=N'2|n N = 1). (3. 10b)

Thus creation and annihilation operators for the non-
orthonormal basis can be derived straightforwardly. We
propose now to obtain the corresponding operators for
the orthonormal basis which we shall designate by a
caret above the symbol, i.e., a',A*, q,A.

We begin by applying to the orthonormal basis the
Hamiltonian and angular momentum of a particle in a
two-dimensional isotropic harmonic oscillator potential.
The operator form of these observables is given by

H=nt +nk, (3.11)
M=nk%, -nt. (3.12)

The orthonormal state (3. 3) is an eigenstate of H with
eigenvalue

2+ g(N + 1). (3.13)

On the other hand it is nof an eigenstate of M because it
satisfies the boundary conditions that require that the
wave function vanishes at ¢ =0, 7/g. The classical
angular momentum is given at the boundaries by the
product of the radius vector by the component of the
velocity normal to the boundary. After collision this
component changes sign but not magnitude so that M
goes into — M. Thus classically M? would be an integral
of motion of the problem and therefore we expect that
1nNY of (3.3) should be an eigenstate of M?. This we can
check directly and find that its eigenvalue is given by

G (N + 1Y%, (3. 14a)
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We now introduce an operator which we call absolute
value of the angular momentum and denote by 1M |. 1t is
defined by the fact that its eigenfunciions are still given
by (3. 3) but its eigenvalue is the positive square root of
(3.14), i.e.,

g(N+1). (3. 14Db)
Symbolically this means that
|| = [M2pre, (3.15)
In the classical picture this implies that
n.t -n_t. whenM>0, (3.16a)
[ :{ni‘g’:—mg when M <0, (3.16b)

We now proceed to apply to the state [nN) of (3. 3) the
operators a', A* of (3.5). We begin by noting that

at

e+ D[(n+1)+ gN + 1)]1\1/2
”M:( nlln+ N+ D! ) LR

=[(n+1)+qWW+ D2+ 1)"2 [n+1,N).
(3.17)
Thus [(n+1) + ¢(N + 1)]"*/%a" acts as a creation operator
on the orthonormal basis with respect to the index =n.
Making now use of the spectra (3.13), (3. 14b) of the
operators H, |M|, we can write a as

& =[3H+|MDH] 2, (3.18)
where from (3, 17) we immediately see that
a* |nNy=(n+ 12 |n+1,N). (3.19)

From the discussion of the previous section we see that
as the basis |nN) is orthonormal the corresponding an-
nihilation operator is just the Hermitian conjugate of
(3.19), i.e.,

a= al 3(H + jM‘)]'”z’
a=(a')y =t ..

It remains now only to determine A* as A is again just
its Hermitian conjugate. We start by applying the
operator A* of (3. 5b) to the state (3. 3) which gives

(3.20a)
(3. 20b)

A'lnNy=p yIn N+ +v,, [n+q,N-1), (3.21)
where u,,, v, ,are two constants given by
oay=1{ln+ gV +2))1/ln+g(N + D]1}72,

Voy=n+g)t /1 B2, (3.22)

Comparing (3. 22) with (3. 17), we see that now the ap-
plication of the operator A" to |nN) does not give a sin-
gle state, as happened when we applied ¢*, but a linear
combination of two of them corresponding to the same
energy. Thus we would like to have another operator
that gives again a linear combination of the type (3. 21)
which we could use together with A* to obtain an operator
that when acting on |nN) gives only a state [n N+ 1).
This is very easy to find as |n#N) is an eigenstate of M>
and thus the commutator

M2 A% (3.23)
when applied to |z N) gives a result similar to (3. 21)
with other values of u,,, v,,. Combining then A* with
this commutator, we easily see that
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{P(eN + 1) A* + [M?, A" ]} [nN)
=4+ D {n+qWN +2)]t/ln+ g+ D2 [0 N+ 1).
(3.24)

If the multiplicative factor on the right-hand side of
(3.24), divided by (N + 1)*/2, is passed to the left-hand
side, and if we make use of the eigenvalues of 4, |M|
given by (3. 13), (3. 14b), we obtain for the creation
operator A" in the orthonormal basis the explicit form

;1‘:-‘1;(]-3/2
X [27H + |M|)H+ |M| =2)--- (H+ | M| = 2¢ +2)]"1/2

x(|a| - Q) g A2

M| -q)+[M% AT (3.25)

The corresponding annihilation operator A is obtained
by taking the Hermitian conjugate of A*, As H, M|, M>
are Hermitian, A is given by (3. 25) when we invert the
order of the factors and replace A* by

A=t 4 £2, (3.26)

We have thus obtained explicitly the raising and low-
ering operators in the orthonormal basis. They are
considerably more complicated than the corresponding
operators in the nonorthonormal basis, but have the
advantage that when we pass to the classical limit they
will give rise to rveal rather than complex canonical
transformations.

As discussed in the previous section, the classical
limit can be obtained with the help of the correspondence
principle, which in the present case implies that the
eigenvalues of the operators H, |M| are much larger
than 1. This implies that the operators of the type
H+ M|+ v, where ¥ is any integer reduce to H+ | M|,
Furthermore, from (3. 16) we see that in the classical
limit
1.t when M >0,

1.5 when M <Q, (3.27)

YH+ [M|)— {
We note also that the commutator
[ME A =MM, A |+ [M, A M =q[MnT=1D+ (17 =M.
(3.28)

In the classical limit M and 7?-71% commute and the
commutator reduces to twice the first term of the right-
hand side of (3. 28).

Taking all the previous observations into account, we
have the following expressions for the a*, @, A*, A in the
classical limit. When the angular momentum M > 0,
then

a=(nt)"2 00, (3.29a)
a=(n,e )"t (3.29b)
A= g2 g, = ) 2,8 ) e, (3. 29¢)
A=q P, —n )2, £) 20 (3. 29d)
When the angular momentum M <0, then
a =ty (3. 30a)
a=(n_£ )2 5, (3. 30b)
A= g2 g = £ )2 E ) e, (3. 30c)
A=qt P g 0. 8) A0 E) V% (3. 30d)

Moshinsky, Patera, and Winternitz 87



All symbols are interpreted as classical observables
defined in terms of the n,n_, £,, £_ given by (3.1), (3.9).

As indicated in Refs. 1,2 the Poisson brackets of any
two observables F; G can be written as

(r,0)=i(2E 20 2F 26)

on, o0&, 9k, om,
i(aF %6 i&&)
on. o8, 0t o)’ (3.31)

and thus for both M >0 and M <0 we check from (3. 29),

(3. 30) that
o, —iap={d, -id}=1, (3.32)
la, At ={a, Ab={a, A"} =1{a, A} =0,

so that A*, ", ~iA, — ia can be considered as canonically
conjugate variables in four-dimensional phase space.

We furthermore see from (3. 29) that for M >0

aa=mn_t_, (3.33a)

A'A=qn,E. -n.8) (3.33b)
while from (3. 30) we have that for M <0

ara=n.k,, (3. 34a)

Ad =g k. -n.E). (3. 34b)

Thus in both cases the Hamiltonian (3. 11) is given by
(3.35)

which corresponds to an anisotropic oscillator whose
ratio of frequencies is ¢/2.

H :2&’&+qA‘AA,

Expressing now @', a,A*, A in terms of coordinate and
momenta x, p, X, P through the usual relations® for fre-
quencies 2 and ¢, i.e.,

@ =(1/V2)(V2 x=ip/V2), a=(1/VZ)(V2x+ip/V2),
A =N gX-iP/Vg), A=(1/N2)(gX +iP/Vg),
(3.36)

we obtain from (3. 29) or (3.30) and (3. 1), (3.2), (3.9)
the canonical transformation that connects them with
Xy, by, Xy, D, Thus the problem of an isotropic oscillator

in a sector of angle 7/¢ is mapped by this transformation

on the anisofropic oscillator whose Hamiltonian is

=5(p? + 4x%) + H(P® + °XP). (3.37)

It remains to see whether the Hamiltonian (3. 37) is
not subject to any constraints as was the case for the
original isotropic oscillator due to the barriers of the
sector. To see that the motion takes place now on the
full configuration space (x, X) and the momenta (p, P)
are continuous throughout this motion, we analyze in
detail the behavior of a*, A* as function of time for the
case ¢ = 3. The motion within the sector of the original
(x1%,) plane is illustrated in Fig. 1 of Ref. 2. As indi-
cated there 77,, £, are given in terms of the polar
coordinates and momenta 7, ¢, p,, p, by

(3.38a)
(3.38b)

n, = zlexplz igYr=vp, —ip,),
£, =nr=3exp(FiQ)r+v7p,+ip,).
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Furthermore, as we assumed in the original configura-
tion space (x,x,) an isotropic oscillator of frequency
unity, we have

N, =(1n,,) exp(it), (3.392)
E, = (&,,) exp(~it), (3.39b)

where (1,,), (£,,) are the initial values of these variables

given in terms of 7,, ¢, p,q, P, Py expressions similar
to (3. 38).

We proceed now to analyze the evolution in time of
7, due to the presence of the barriers of the sector. The
motion for ¢ =3 is given by the heavy lines of Fig. 1 in
Ref. 2, and we see that in general there will be six
branches to the trajectory. We can start with any of
them initiating the motion at the barrier ¢,—0 with
Poy> 0 as indicated by the arrow marked 1 in Fig. 1 of
the present paper. The initial conditions are then

/}"0:0[>0’ (10020’ prozﬁy pw0:7>0-

Designating with an upper index 1 the 7, of this first
branch, we have

(3. 40)

1y

' =5(a+ oy — iB) exp(if). (3.41)

After collision at the barrier ¢ =(r/3) the motion takes
places in the second branch which, using the method of
images, can be thought of as starting with the initial
conditions

Vo=, @,=27/3, p.=B, P,,=-7. (3. 42)

Using these values, we can then write 1\’ associated
with the second branch. When the motion reaches ¢ =0,
we can again use the method of images to find what are
the initial conditions for the third branch and thus get
n'*. The different starting points with the direction of
the angular momentum are marked in Fig. 1 of the
present paper by the arrows numbered 1 to 6. We then

obtain for the six branches

1 = sexp(x ige) (@ ¥ (= 1)ay —iB) exp(il),  (3.43)
where k=1,2,3,4,5,6 and
901=0, P =27/3, Qo =47/3, (3. 44)
Poa=41/3, ®os=21/3, ®os=0.
1
5
|
(]
v
3

FIG. 1. The problem of the sector of angle /3. The arrows
indicate the direction of the velocity normal to the wall for
each of the six branches of the trajectory when we use the
method of images. Thus for branches 1, 3, 5 the angular mo-
mentum is positive and for branches 2, 4, 6 it is negative.
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We see that n*’ (and thus also £*’ which is its con-
jugate) suffers discontinuities as we go from branch «
to branch « + 1 at the point of collision. But this is not
reflected in @', A*. The latter change form at the bar-
riers of the sector where p,, and thus M changes sign,
as indicated in (3. 29), (3.30). Thus from (3. 43) we ob-
tain that on all six branches of the original motion in
the sector &*,A’ are given by

@ =} [(a-iB) - a*y*Jexp(i20)/[(a+ a”y) + /2,
(3. 45a)
A =g ?[(a+ oy Y + B2 ¥ (a+ aty - iB) expligl).
(3. 45b)

We have now written the result for arbitrary integer g
rather than only ¢ =3 as the extension of the arguments
is obvious.

As seen in Fig. 1 of Ref. 2 the time required to cover
all branches of the orbit in the sector of configuration
space (x,x,) is the same as the one needed to traverse
the ellipse in the full plane without barriers. As our
frequency is unity this time is £=2n. After covering then
all branches in the space (x,x;), we have that a*, 4",
and thus also x, X, p, P given by (3. 36), return to their
original values. Thus we have proved that the canonical
transformation relating x,, x,, p;, p, to x, X, p, P maps
the isotropic oscillator in a sector on an anisotropic
oscillator with ratio of frequencies ¢/2, over the full new
configuration space x, X.

The remaining steps required now to find the group
of canonical transformations responsible for accidental
degeneracy for the problem of the sector have already
been discussed in Ref. 2. The Hamiltonian (3. 35) can
also be written as

H= 2q[ ?l (i %A A]
H=ql(q/2) a"a + A*A]

We can thus make a further transformation of the type
discussed in the previous section, and also in Ref. 1,

to map the problem on an isotropic oscillator in the full
plane. The symmetry group of this last oscillator is
U(2), and it is responsible for accidental degeneracy for
this problem. We could then write the symmetry group
responsible for accidental degeneracy of the oscillator
in a sector of angle 7/q as

= [%(
where U is the two dimensional unitary matrix and 7 is
the nonlinear canonical transformation relating x,, x,, p,
b, to the coordinates and momenta associated to an iso-

tropic oscillator in the full plane as discussed in the
previous paragraphs.

(3.46a)
(3. 46b)

if ¢ is odd,

if g is even.

U+U*)

(i/2) (U = U%) (3.47)

(i/2)(U = U*)
a7

We now proceed to apply a sequence of similar steps
to finding the group responsible for accidental degen-
eracy in the Calogero problem for the case of three
particles. The procedure of this and the following sec-
tion indicates that the method will work for all cases in
which the spectrum has the form (1. 1) as we discussed
in the Introduction.
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4. CANONICAL TRANSFORMATIONS AND THE
CALOGERO PROBLEM

As discussed by Calogero, °> the Hamiltonian of his
problem for the three-particle case in one dimension is

I?:;IO-F v,

~ 3 2
Ho== 323 gt Hlla =+ (n =) + (=),
1 1 1
V= + + . 4.1
g[(xl - ’Cj)z (g = xs)z (%, = xs)z] ( )

Introducing the Jacobi coordinates in polar form, i.e.,

¥sing =(1/v2) (x, - x,),

reose=(1/V6 ) (x, + x, - 2x,), (4.2)

X=(1/\/-3_) (xl +x2+x3))

we have that the intrinsic Hamiltonian H, from which the
center of mass motion has been eliminated, takes the
form

H=H,+V, (4. 3a)
1/1 ¢ 3 1 2
= —— + — - 2) o
H, 2 <r ar or 7% ot 4 ) L (4. 3b)
9%
= 577 30 (4.3¢)

where for convenience in later notation we subtracted 1
from H, so that it becomes identical to (3. 11) and use
was made of the relation®

sin + sin?(¢ + 27/3) + sin"*(p + 47/3) = 9 sin"*(3 ).
(4.4)

We now proceed, as in the case of the sector problem,
to discuss orthonormal and nonorthonormal eigenstates
of the Hamiltonian H. The former have been derived by
Calogero and we shall denote them by an angular ket
{nN) whose explicit form is®

3NN+ 1) 12
T(N+2T)T(n+ 3N+ 31+ 1))

|y = (= n"z*rm(

x/r'iN+3'r [ 2/2)] 3”*37 ’V )(smS(p)TCN(COSHIW)
(4. 5a)
where
T=3+(1+ o) (4. 5b)

and L7(r?), C’(cos3¢) are respectively Laguerre and
Gegenbauer polynomials of the arguments indicated.
The kets |nN) are normalized for ¢ in the interval

0 < ¢ <(n/3) as the repulsive potential V prevents the
particles from going outside these limiting values of

the angle ¢. The phase factor (— 1)" is introduced to
establish a complete paralelism with the sector problem
as will be seen below.

The ket (4. 5a) is an eigenstate of the Hamiltonian H
of (4. 3) and of the angular operator®

1 9

— pH2 in2 —
=p, +(9g/ sin’39), EP

where p = (4.6)

Moshinksy, Patera, and Winternitz 89



The corresponding eigenvalues are®
H|nN)=(2n+ 3N + 37) |nN),
M?|nNy = 9(N + 7)%|nN).

From (4. 7a) we immediately see that the Calogero
problem has the same accidental degeneracy as that of

an anisotropic oscillator whose ratio of frequencies is
2/3.

As in the case of the sector, we define the operator
IM | as the one which when applied to |nN) has as eigen-
value the positive square root of that of M, i.e.,

|M| | nNy =3(N + 7) |nN). (4.8)

We now turn our attention to the nonorthonormal basis
introduced by Perelomov® for the Calogero problem. He
starts by considering two creation operators® which have
simple commutation properties with the Hamiltonian
(4. 3). In this paper we shall denote the operators by
b*, B* and their commutators with H and among them-
selves are®

[H,b*]=2b", (4.9)

We shall express these operators in terms of the n, of
(3.38a), where p,, p, are replaced respectively by

(4.7a)
(4. o)

H,B*]=3B", [v",B']=0.

pr:—i'—a‘, pw: (4.10)

or e

From Perelomov’s paper® we have (suppressing ir-
relevant multiplicative constants) that

b =n1n.-9g(4r® sin’3¢)™, (4.11)
27 g

B =n+n’+ 25—
4 r*sin“3¢ (4.12)

x [(cos3@)(r —ip,) + (i/37)(sin3@)p, .

The Hamiltonian H of (4. 3) can in turn be written in
terms of n,,m_as

H=n,t, +71._ +9g(2r®sin’3¢)™.

It is particularly easy to check the commutation
relations (4.9) if we express them as Poisson brackets
and calculate them classically using (4.11), (4.12),

(4. 13) and (3. 38a). It is interesting to note that b*, B*
reduce to a’, A" of the sector problem for ¢ =3 when
g=0.

With the help of b*, B* it becomes now possible to ob-
tain a complete nonorthonormal basis for the Calogero
problem. °® We shall designate these states by the round
ket |nN) defined by

|aN) = (nINTY2 (57y"(B")Y | 00), (4.14)

where |00) is the ground state of the Calogero problem
given by (4. 5) when n=N=0. From (4.9) it is clear
that these states correspond to the same eigenvalue of
the energy (4. 7a) as the orthonormal states |nN). Fur-
thermore, it is obvious that

b*|aN)Y=(n+1)*/2 |n+1 N),

(4.13)

B (4. 15)

nN)=(N+1)"2|n N+1).

As in the previous sections we expect that the anni-
hilation operators for the nonorthonormal basis are
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not the Hermitian conjugates of 5*, B*. We shall not
proceed to derive them but rather go directly to the
operators, which we shall denote by 13’, ﬁ‘, which are
the raising ones for the orthonormal basis. The pro-
cedure we shall follow will be a carbon copy of the one
employed for the sector problem.

We start by applying b*, B* to the orthonormal basis
|nN). Perelomov® has shown that

b [Ny =,y [n+ 1 N), (4.16)
B |aNy=p y|n N+ 1)+ v, |n+3,N-1), (4.17)
where
Aop=ln+1+3N+31)(n+1)]2 (4.18a)
_ 1“(n+3N+37-+4))1/2 (N+ 1)}N+27) )‘/2
“"”“(F(n+3N+3T+1) ((N+r)(N+r+1) ’
(4. 18b)
N(N+27 - 1D)(n+ 3)n+2)n+1) \/?
""N:< N+ (N+7-1) ) ' (4.18¢)

By using the operators H, |M| whose eigenvalues are
given in (4, 7a), (4. 8), we immediately see from (4. 18a)
that the operator

b = [L(H+ M) 2 (4.19)
has the property
b* Ny =(n+ 102 [n+ 1 N). (4. 20)

For B* we require, as in the case of the sector problem,
another operator which when combined with it would
allow us to eliminate the ket [n+3,N —1). It is clear
that the commutator [M?, B*] when applied to |nN) gives
a linear combination of states similar to (4.17), i.e.,

(M2 B nNy = y[n N+ 1)+ vy [n+3,N =1, (4.21)
where
poy=9020N+7)+1u,, (4.22a)
IJ"'NZQI— 20N+ 1)+ l]unN. (4. 22b)

Combining then the operators B, [M?, B*], we get
{18(N+7)=9]B" + [M?, B*]} |[mN) = 36(N + 1),y | n N + 1).
(4. 23)

Finally making use again of the eigenvalues (4. 7a),
(4. 8) of the operators H and |M| we can write the
raising operator B* for the orthonormal basis as

B =(3v6 )t M| 2[(|M] =3)([M]+37-3)(H+ |M])
XH+ |M|-2)H+ M| -4)]? (4. 24)
x{3B*(2|M| - 3)+ [M? B},

which clearly has the property that
B* [nNy = (N + 1)*/2 [n N+ 1). (4. 25)

The annihilation operators 13, B are then the Hermitian
conjugates of the creation ones and their effect on the
kets |nN) are

blnNy=nt'?|p—1 Ny, BlnaN)=N"?|n N~-1). (4.26)

Thus the operator
2b°h+ 3B*B+ 37 (4.27)
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is diagonal in the basis |nN) and its eigenvalue are given
by (4. 7a), so that it is a representation of the Hamil-
tonian of the Calogero problem in terms of the new
creation and annihilation operators.

The operators 3', B’ reduce to those of the sector
problem for ¢ =3 when the potential V goes to zero. This
is seen immediately as b*, B* reduce to a*, A*; H, {M |
become those of an isotropic oscillator and, when g=0,
7=1.

As in the sector problem we are interested in the
classical limit so that we can obtain the canonical trans-
formation that maps the Calogero problem on an aniso-
tropic oscillator [as indicated by the expression (4. 27)
of the Hamiltonian] whose ratio of frequencies is 2/3.
Again we use the correspondence principle in which the
quantum numbers associated with H, (M| are large. We
can then disregard integers or T as compared with the
eigenvalues of H, |M| and thus in the classical limit we
have

b =X H+ | M2, (4.28a)
=(3V6 ) UH + |M|)?/2|M |22 (6B | M| +i{M?, B*Y).
(4.28b)

As usual in these cases we have replaced the commu-
tator [F, G] by the Poisson bracket i{F, G}, which is
allowed quantum mechanically and gives an expression
that has meaning also in the classical limit.

If we want to calculate explicitly 5*, B it is convenient

to express b*, B, H,M?, in terms of n_,7_, &,, £.. From
(3. 38) we note that
by =nt,-n.t,
br =il + ).+ E)I P - £.E)
=+ E)m_+ £ )P/?
exp(i@)=[(n, + £)/(m.+ £ )]/? (4.29)
and thus we obtain
. (M + £V (M +E)
b _7L77-+ gg [(n* ¥ E_)S_(n_+ £+)3]2 (4. 303.)
. 27g
Bl =+ ) = T T 5~ (7. + )P
[, + £)3+ .+ £, [2n,n. +n,, +n.£.]
+3lm A EP -+ £ m.t, - n.t )},
(4. 30b)
(M + ) + &)
— -18 . S
m.E, +9.£) ATy s EFF (4. 30¢)
m +E)Ym +e)
ME=(n.t, -7t -36 < . 4. 30d
£, ~m.E) g (4 E)m(n. 2 e )P - ( )

The Poisson bracket appearing in B* can be calculated
using (3. 31).

We have then the exp11c1t canonical transformation
that takes us from#n_,7n_, £, £_ into b' B* b B and maps
the classical Calogero problem into an an1sotrop1c
oscillator whose ratio of frequencies is 2/3.
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As discussed in the last part of the previous section,
the anisotropic oscillator can in turn be mapped into an
isotropic one, and thus the group of canonical trans-
formation responsible for accidental degeneracy in the
Calogero problem is given again by a realization of the
U(2) group of the form (3.47). The canonical transforma-
tion 7 appearing in (3.47) is now the one that takes us
from the relative Jacobi coordinates and their corre-
sponding momenta to 7,,7., £,, £, from there to b°, B*,

b, B as indicated above, then to the creation and annihila-
tion operators of the isotropic oscillator as discussed

in Sec. 2, and finally to coordinate and momenta opera-
tors defined in terms of the latter by relations similar
to (2.19).

The canonical transformation 7 is a very complicated
one and it seems difficult to visualize how we could have
determined it from a purely classical reasoning. By
using gquantum mechanics and both the orthonormal
basis of Calogero® and the nonorthonormal one of
Perelomov® we were able to find it, though the relations
(4.28), (4.30), show the complexity of its explicit form.

5. CONCLUSION

Turning now to the general two-dimensional problem
whose spectrum has the form (1.1), we can say that the
group responsible for its accidental degeneracy is a
realization of the U(2) group of the form (3.47), The
steps required to derive this symmetry group were out-
lined in Sec. 1.

It is interesting to note that the generators of the Lie
algebra of the U(2} symmetry group of the isotropic
oscillator in the full plane, i.e., the n,f, of (2.28a),
are integrals of motion of this problem. If we have a
canonical transformation 7 that maps any problem whose
spectrum is given by (1. 1) into an isotropic oscillator
in the full plane, we can use it to express nE, 4,i=1,2,
in terms of the coordinates and momenta of our original
problem and thus obtain interesting integrals of motion
for it.

We could extend our class of problems to n-dimen-
sional configuration space if we assume that the spec-
trum is some linear combination with integer coefficients
of the quantum numbers v, v,-+- v,. A problem of this
type is given by the n + 1 particle Calogero problem, 5:¢
A simpler case appears when we consider »n particles
in a one-dimensional harmonic oscillator potential, but
restricted to obey Fermi statistics. In the latter case
both an orthonormal and nonorthonormal® basis can be
obtained in terms of polynomial functions in the creation
operators 7,,m,+* n,, acting on the antisymmetric states
of lowest energy, and a discussion similar to the one
presented in the previous sections can be carried out
for this problem. The group of canonical transforma-
tions would again be given by (3. 47) but with the U ap-
pearing there referring to the n-dimensional unitary
group.

We have given a general procedure for deriving the
group of canonical transformations responsible for
accidental degeneracy in a wide class of problems. We
think that it provides a framework for a general under-
standing of these problems, which, except for some
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recent attempts, 1'~** have been attacked by the indepen-
dent study of each case.
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On the exact solutions of the Wick-rotated fermion-antifermion

Bethe-Salpeter equation
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Exact solutions of the fermion-antifermion Bethe-Salpeter equation with harmonic kernels are given
for bound states with zero mass. The algebraic structure of these BS amplitudes is analyzed.

1. INTRODUCTION

In this paper we consider the fermion—antifermion
Bethe—Salpeter equation in the Wick-rotated form for
poundstate mass M=0.! The interaction kernel is
specialized to harmonic forces.

The interest in this form of the BS equation is con-
nected with the description of the mesons as quark—
antiquark boundstates. ? Since one needs smooth kernels
in order to obtain linear Regge trajectories for the
meson mass spectrum, it is worth studying an approxi-
mation of these kernels by harmonic interaction. Under
the dynamical assumption of heavy quarks (M << 2n1g,,r)
the restriction to boundstate mass M =0 is a useful
starting point.

Under these specifications the BS equation takes the
form

(vg = im) x(q) (vg — im) = (R x){q),

R=__ 2 KPY (1)

i=S,v,T,A P
K'=a -p0,.
The P?are projection operators on the Dirac matrices
1, %, 0.,, ¥s¥u, ¥s (denoted by S, V, T, A, P),
2. EXACT SOLUTIONS

The BS equation for M =0 decomposes into three
Dirac sectors S+V, T+A, P. This fact is used in the
ansatz

i
x(@)=xy- 2_1;{7’(1, Xof = Xo + X1 (2)

where X, is of type V, 5, A, T, —, if X, is of type
S, V,T,A, P, Because of

(yg = im) (o + x0) (vg = in)) = = (% + 1% (xy - x1), (3)

insertion of the ansatz (2) into Eq. (1) leads to two

scalar equations

(-?=m? =K% %x,=0,

(4a)
(- g% - m2+KY %, = 0.
The spin dependence appears only in the coupling of
Xo and Xi:
)
X == 5. 17, X (4b)

(Up to this point no special momentum dependence of
the kernel is assumed. )

In the case of harmonic potentials Eq. (4a) are four-
dimensional oscillator equations. Because of the oppo-
site signs of the kernels in (4a) and because of the
coupling (4b) we must demand 8'= - g* =B, (In the fol-
lowing we make the substitution ¢ —¢/8'/%). x(g) is a
solution of the BS equation, if X, and x; satisfy the same
oscillator equation. If x, is an arbitrary oscillator solu-
tion, then {yq, x;} is, in general, not an eigensolution
belonging to a certain eigenvalue. This is most easily
seen by introducing the well-known creation and anni-
hilation operators

S RS B )
W=l T =7 (* a)

with the commutation relations
la;, af]="6,,, [a;,a;]=0 [a},al}=0. (5)

By writing
i -
X1=-— 3 e (@l +a2) xob,
it is seen that x; is also an oscillator eigenfunction, if

1 +
s quxot = " (Y, @ Xo

TABLE L. The complete solutions of the BS equation are given by Eq. (2). X denotes an arbitrary scalar oscillator eigenfunction
Also, the numbers C, can be chosen freely within the assumptions we made. By specializing X and C,, one can arrange that the

solutions have certain transformation properties.

Dirac sector

Conditions on X;

{0 @i xeh =0 My xeh=0 {72, @ X} = 0
S+V Xo=7, @ a] aL-a;a;a:)Y Xo=7, a, a;, —a, a,a)X Xg = €4veoy, a, a;CoX
TiA Xo=Vs% ap X, Xo="5Y, 4, X,

Xo=Cun @ Cu X X0= 0, @,C, X X0 Oy @, 43X
P Xo=Ys X
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TABLE II. Exact solutions of the fermion—antifermion BS equation for harmonic interaction.

Dirac  Solutions of the BS equation Sector (j*5)FC Eigenvalues
sector o ol
i e
Vu';w—\f?d (@a;a, —a; apa,)X, o’ =—m? —2(N+1) Vg7, oS =m?+ 2N +2)Vp7,
nn
13 - + o .
s&v (y“_m\@a“)(a:””au' A oV =—m? —2(N+3)VgV, ozs:m2+2(N+2)x/E‘7
7 :C;a’ - €4aa8a;%
. - _1\0
€uyp07u.auapcox (nj)-l n2 1> aV:_7’72—2(N+2)V/ﬁ-T,
Ve =5,
(7&')’,, 5% s ,z_wsouyaua,)x, ) af=—m? —2(N+1)BA, ol =m?+2(N+2)Vga,
Y nn B Ta o
( ik BT g
A__ 00 T2
(y57va+ , F750uuau V)X @ m°—2(N+3) \/EK’ af=mi+2(N+2) @
L N 1 2
TdA (”uvav_;,ﬁ'}’s?agwwa;“v> VI :d@) = 75 a3 al=—m? _2(N+ DVET, af=m? +2(N+2) Vg7,
. n+l n=1\"
Xeko%q azd, X 5 T3 pA=—gT
R
(awa,,~nzﬁvbyae°‘ﬂu“a3a> VP :d®) =5, aT=—m? —2(N+ VBT, oh=m?r2(N+ 2)VgT
X% ay azd, X
t X nn\"” T 2 7
Oy A, X 11 53 al'=—m* —2(N+2)vgT
_ -t
P YsX I (%) aP——m? —2(N+2)\VgP (N=n+2%)
or which the representation of 0™ (4) decomposes into ir-
1 reducible ones. A complete reduction leads to six
=T Yy @ Xot (6) classes (sectors) of irreducible representations. By
this the BS equation decomposes into six systems of
or hyperradial equations. *°

=0.
In Table I the oscillator solutions x, satisfying these
conditions are listed for the three Dirac sectors.
3. O"¢(4)-SYMMETRY

The BS Eq. (1) is invariant under the transformations
of the group O(4) (x, = O4x,) extended by 3-space re-
flections II and charge conjugation C.% In a group theo-
retical analysis one takes advantage of the fact that O(4)
is isomorphic to the direct product SU(2)® SU(2):

O: = o:(R+) R+); Rie SU(Z)o

Therefore, the irreducible representations of O{4) are

characterized by two angular momenta (j*, j7). Because
of
N(R,, B)N=(R,R), CR,R)C'=(R,R), COC'=1],

the irreducible representations of O"°(4) are further
characterized by an inner parity '==x1, if j'=j-, and
by an inner charge conjugation C'=+1.

The BS amplitude may be expanded in a base, in
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We now specialize the solutions given in Table I in
order to achieve their transformation according to these
irreducible representations (5%, j7)"'°’. This is done by
choosing X as oscillator eigenfunctions, which are also
eigenfunctions of (I")?+ (I")%, of * (1=1"+1), and /;:
inl,rl =[q" Ly (¢*) exp(=4*/2) (/11 () (7

vy
These functions belong to the representation (I*, 7)™ ¢
=($n, sn)**. The energy eigenvalue is a=n+2r+2,

The parameters C, in Table I appear in sectors with
j*#j . These representations have no inner parity n’.
We fix the C, in such a way, that the solutions x(g) are
eigenfunctions of the parity operator Il with the eigen-
value (- 1) or {-1)*! (denoted by “a” and “b”,
respectively).

By this procedure we find that the solutions given in
Table I correspond in a unique way to the six sectors
of the BS equation® and to the solutions obtained by solv-
ing the hyperradial equations. 5 The result is listed in
Table II.

D. zum Winkel 94



ACKNOWLEDGMENT ’For references, see M. Bdhm, H. Joos, and M. Krammer,

- Act. Phys. Austr. Suppl. XI, 3 (1973).

I want to thank M. Krammer and H. Joos for their 35, Mandelstam, Proc. Roy. Soc. A 287, 496 (1956).

hints and help in doing this work. R.F. Keam, J. Math., Phys. 9, 1462 (1968); 10, 594 (1969);
11, 394 (1970); 12, 515 (1971),
SM. BShm, H. Joos, and M. Krammer, Nucl. Phys. B 51,
397 (1973); M. Krammer, DESY-Internal Report T-73/1

(1973).
1H.A. Bethe and E.E, Salpeter, Phys. Rev. 84, 1232 (1951); For details, see D. zum Winkel, Diplomarbeit, Hamburg,
N. Nakanishi, Prog, Theor. Phys. Suppl. 43, 1 (1969). 1974.

85 J. Math. Phys., Vol. 16, No. 1, January 1975 D. zum Winkel 95



Four examples of the inverse method as a canonical
transformation

D. W. MclLaughlin*

Department of Mathematics, Arizona University, Tucson, Arizona 85721
(Received 8 August 1974)

The Toda lattice, the nonlinear Schrddinger equation, the sine-Gordon equation, and the
Korteweg—de Vries equation are four nonlinear equations of physical importance which have recently
been solved by the inverse method. For these examples, this method of solution is interpreted as a
canonical transformation from the initial Hamiltonian dynamics to an “‘action-angle” form. This
canonical structure clarifies the independence of an infinite number of constants of the motion and
indicates the special nature of the solution by the inverse method.

Recently a large class of nonlinear dispersive wave nonlinear wave is constructed from the spectral data at
equations has been integrated by the “inverse method.” time ¢ by a Gel’fand— Levitan equation,
These equations describe a wide variety of physical
models ranging from water waves to quantum optics. A Clearly, the key to this method is the linear eigen-
review of this “inverse method, ” together with descrip- value problem. Thus, it is of considerable interest to
tions of its many physical applications, may be found discover relations between this linear problem and the
in Ref. 1. The latest results on the method are contained nonlinear physics, or the nonlinear wave equation. Such
in Refs. 2, 15, 186, relations indicate the generality of the method and its

. applicability to other physical situations.
This method is based upon the association of a linear

eigenvalue problem to the nonlinear wave equation. In two cases® we have shown that the appropriate
Given the nonlinear wave at time {=0, this association linear problem actually describes the micro {quantum)
maps the nonlinear wave dynamics into spectral data physics of the medium which supports the nonlinear
for the linear problem. The time evolution of this wave. In at least these cases, the linear problem has a
spectral data is easily computed. Then, at time £, the direct physical interpretation.

TABLE 1, The main results.

Toda lattice Nonlin., Schrod, Sine—Gordon Korteweg—deVries
1. Nonlin- Q, - expl@,4 — @) — explQ, — Qp.0 i = dug, + i E1t U d, - sin) ;:Isl’i‘n(u) 1= Gl — U
car dy- )
amics
2. Hamil- #H :2 —1;“+[0Xp()"_1 - Q) -1} H =if_“;[P,Q,— (X/2) P dx H = f_Z[cos (T ?)dx’) - 1] dx H 7]_2[u3+ux/2] dx
tonians e
< gH N S . 3 ol . asll
Qnié?n_a QiéP —IQn_leQZ Ui-BTW e Ox Su
3. Canoni- . oH sH ) o (F,u.( v .,
_ VN =Y _ip - _9 , () dls o [t —
cal eq. P"i_BQn =% — edte, B 30 iB,, i¥PQ o x sm( mz (") dx” Bt =)
from// AL E Gy - Q, -
. N 5 20 2 N N N ‘
4. Ifamllton” A ‘—Z . ‘+f 2sin(@iple) do K -ty (}’{,ﬁ—ﬁf) IS ...iZ((,—'ij_ i) IS _3%2_ P
ian 2 A 3E = el i¥t
—action . )
angle” J:[ 48p () dt _éf %p(g)(lg ¢f 8E0p () dx
5. Canoni- . 8k . 8K 2, s A PRy
St = e S 7’ 5 b
cal eq. q; o, +p; 4 a, IPJ q; o, ie b i, ;
“ietion . . A ; i v
. oA = 3 2i = AN 5 . A
:m_g;\e)" o (5_,‘; =2 gin (@) 7 :5% = ——f—} “; 57)]— = —ie?; (&) i 5t
“pEQ
TRIR L b L
(I(E)*rgb‘ =4t () = .
6. Canoni- P (@) = ~cos20/47 sino)In{l + 1517} plE)=—2i/Em)In{l ~ (p1%} pE) = (= 1/78) {1 — 151%} P e/ Indd 1612
cal maps 4l0) Zarg b (ei¥) qEr=argh(t) qE) =arg b (&) (&) = arg b(£)
p=laig? =2 py=21t; B=—2it] 5~ lng; B=lags -8
;== 200+ 2%/ - £912ne; q;=— @/%)nc; q;7—1Inct g;=~Incy: q; 2 Wlic;ad(T)]

;- — @/F)Incy
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Here we take a different approach and display the
canonical structure of the inverse method. We consider
four equations of particular physical interest. Each of
these nonlinear equations is written as a Hamiltonian
system. The linear problem is then interpreted as a
canonical transformation which maps this Hamiltonian
system into the spectral data viewed as a Hamiltonian
system of “action-angle” type.* Such “action-angle”
Hamiltonians do not depend explicitly upon the ¢’s. As
such, the canonical equations of motion for the spectral
data are trivially integrable. These yield p’s which are
constants of the motion and ¢’s which vary linearly with
time.

This canonical structure provides a clear interpreta-
tion of the infinite number of conservation laws which
these nonlinear equations possess. In addition, calling
upon our experience with action angle transformations
in classical mechanics, we realize that such systems
are quite special. This provides some feeling for the
sensitivity of the inverse method to changes in the non-
linear wave equation. Finally, these canonical struc-
tures would seem of interest as models for quantized
field theories.?

TABLE II. The linear problems.

Our results are displayed in Table I. The Korteweg—
de Vries (KdV) column was obtained by Zakharov and
Faddeev® in a fundamental paper. Our arguments for
the other three equations closely follow those of Ref. 5.
However, it is now clear that both the Toda lattice and
the nonlinear Schddinger equation provide a better model
than KdV for a study of the canonical structure of the
inverse method because the computations involved are
more explicit. Also, it now seems clear that the in-
verse method can quite generally be interpreted as a
canonical map from the nonlinear dynamics to a
Hamiltonian system of action angle type. Currently,
Flaschka and Newell® ! are investigating this generality
with regard to the Clarkson inverse formalism.?

For the rest of this note we go through Table I indi-
cating the type of computations and discussing several
distinctions between the various equations. In line 1 (of
Table I) we display the nonlinear dynamics. In lines 2
and 3 this dynamics is expressed in canonical form.
Notice that in the sine-Gordon and KdV cases, explicit
p’s and ¢’s are not identified. Such an identification can
be made at the expense of embedding the structure in a
larger spacer®"; however, this is not necessary.3® It

Toda lattice Nonlin, Schréd.

Sine—Gordon Korteweg—de Vries

1. Linear prob. (L@ =0, Pn—-1)

= (2)

[ _ ”»
L =Ad ., +a,®n+ 1) +B,8(n), o, —iu/2
a,=3 exp(Aln/Z) zo={ s+
ﬁnE_EPn-llAnEQn-l_Qn +T -9

)

= (%
(%)

0y v/2) by
LQE(U/Z"B,: &)

Ld=-8_d+ud

. Spectrum of L

2A=f 4+l g=¢+ip

rA=—1if L=E+ip

Point ge=1,1) (¢=1,2,...N) g (i=1,2,...,N)
Continuous  ¢=¢e* ¢ ¢ [0, 27) L=t VY tc (—w, )
3. Scattering P, )= asn—+o

bound, cond,
“Jost Solutions”

on, DR Mas n——

hix, 5):(;))6“" as x— +©

olx, £~ (é)e'“" as x——o

4. Def. of the & (n, £y =b(d)d(n, t) o, 5= alE)ilx, &)
coefficients +al®)pin, &), £=ei® +b(E)Px, &)
(a, b, c) lj)z*
= <—41*)
¢; denotes a normalization c; denotes a normalization
of the jth eigenvector of the jth eigenvector
5. Scattering data  {; ¢; bl@)} {¢; ¢; bG)}
6. The evolution  b=(t~¢-1)o b=4it2p
of the scatter- S - F o=
ing data £;=0 £;=0
¢;=3(;= £ ey é;=4itkc;

. A basic identity

Ina(t) :t In EJ_(L_‘L‘_K_)
j=1 1- Etf

: 2r i

i e
L= do—5

™/, et~

xIn|a(et®) |

lna(é):iln(ﬁ,Q
Iz £-¢

1 =mlag)l
-7”',[,. T ds

A=—1i ¢=¢+iy
L (j=1,2,...,N)

7

=t W £c(—w, )
Plx, &) = (g)e“x as X — + o

olx, &) = (é)e‘“" a8 X ——

@ lx, £)=a(t)Dlx, £)
+b (@), E)

- (¥
- (4)

¢; denotes a normalization
of the jth eigenvector

{&; ¢; oG}

B i
b~—ib
£;=0

é;=- (i/2¢))c;

_ [
1m(§)—ﬁ;ln<g_—§?’>
1 /= Inlagy!
wf e

A=E t=E+in
g G=1,2,....0)
(25 Ee (—w, )

Plx, £) = et g5 x =+

olx,t) = c* gg x—— o0

olx, &) =alE)*
— b*(E)y(x, &)

¢; denotes a normalization
of the jth eigenvector

{t; ¢; &)
b=8eic;
g0
é;=88%C;

- £=¢;
1n{1(§)—j§ln<§fgf>

1 /7 Infag)| .,

—mﬂ O o

8. “y=pn 1m<c)~j§0 HA; £—0 (g~ £ e94,, p—w 2 ()~ £ A, t—0 a(e)~ £ ¢4, g
= = Jj=1 -
Ag=—K=—# Ay=—(X/18)K = Aj=—1ix =iy Ag=— @61 K=— (6 [f
—(X/18)Y
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should be remarked that for the Clarkson formalism,
this embedding seems natural.®!® Finally notice the
Hamiltonian is not the standard one, %, used to describe
the sine-Gordon dynamics in laboratory coordinates

(X, T)7

n= [ "[5(Q% +@%) +(cos@ - 1)]dx

:f_:[%(Pz+Q§c)+(cosQ— 1)]ax. (1)

In lines 4 and 5 of Table I, we display the action
angle Hamiltonian dynamics. The canonical maps con-
necting the two Hamiltonian systems are described by
the linear eigenvalue problems which are summarized
in Table II. This table is self-explanatory. Its entrees
were obtained by Gardner, Greene, Kruskal, and
Muira® for KdV, by Zakharov and Shabat'® for nonlinear
Schrodinger, by Ablowitz, Kaup, Newell, and Segur'!
for sine—Gordon, and by Flaschka!®'!? for the Toda lat-
tice. Notice in particular that the scattering data listed
in line 5 is defined through the Jost solutions of line 3.
The evolution of this scattering data is summarized in
line 8,

The existence of a one-to-one map between the scat-
tering data and the nonlinear wave dynamics follows
from Gel’fand— Levitan theory. In addition, the identifi-
cations made in line 6 of Table I show that the evolution
of the scattering data (line 6, Table II) can be repre-
sented through the action angle Hamiltonian systems
listed in lines 3 and 4 of Table I. Thus, the proof that
these maps are canonical transformations rests on the
verification that H is mapped into K.

In all four cases, this is established by expansions

ma®= 5 AL (2)

1= a0

The coefficients A; can be represented in two ways. One
way begins from the identity displayed in line 7 of Table
II, which follows from Cauchy's theorem and the identity
lal®+1b|%= 1. The main results of this computation
are displayed in line 8. In particular, the action angle
Hamiltonian K is always one of these coefficients. Al-
ternatively, the coefficients A; can be expressed in
terms of the nonlinear waves. In all cases, H=K.

The explicit calculations for A; in terms of the non-
linear waves differs slightly between the sine—Gordon
case and the other three examples. For the sine— Gor-
don case, H=K=iA_,. The negative index indicates that
we need Ina(¢) near {=0. This is reminiscent of scat-
tering length computation in quantum mechanics. 14
Following closely the type of arguments used in quantum
texts, we obtain the identity

i [T
églna(l) == 1/ (&4, + @0, —aldx. (3)
For the sine—Gordon case, it is easy to compute the

Jost solutions at £=0,
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sin f L(x ) dx’
o« 2
i\ _

cos fxl%l dx’
- (4)

Fald') o,
cos(J: 5 dx

w
. olx!
- sm< % dx’

o=(5)-

Inserting (4) into (3) yields A_, and explicitly shows that
tA_ = H. For the other three cases, H is obtained from
an expansion of Ina by the same expansion procedure
used in Ref. 5. This distinction can be traced to the
pole in the dispersion relation for the linearized sine-—
Gordon equation. In fact, the analytic structure of this
dispersion relation seems to determine which coeffi-
cients in the expansion of Ina(¢) yield H.®

For the sine—Gordon and KdV cases one must also
check the invariance of the simpletic form. For KdV
this is done in Ref. 5. Presumably the sine—Gordon
case would follow analogously. This check is not
necessary for the Toda lattice and nonlinear
Schrodinger cases since there explicit p’s and ¢’s have
been identified.

Canonical structure provides a clear description of
the infinite number of constants of the motion. Clearly
the action angle momentum (p(£), p,) constitute “n”
constants of the motion in our “2#”’-dimensional phase
space. On the other hand, notice that a({) is constant in
time; thus, by (2), the coefficients A; are also constant
in time. In fact, these A; represent the celebrated in-
finite number of conservation laws (polynomial conser-
vation laws for KdV.) Specifying these A; fixes 1na(f)
by (2), which in turn fixes (p(8), p;).

Given an infinite number of conservation laws, the
exact meaning of their independence is always a prob-
lem. Here, the canonical structure clearly displays
the independence of the infinite set of constants of the
motion {Ai}. Each of these can be specified arbitrarily
and independently. Each such specification fixes the
action angle momenta (p(£), p;) and thus fixes a class of
solutions. [To uniquely select one solution from this
class, one must fix (¢(£), ¢;) initially, ] Thus, fixing
specific values for these constants of the motion 4;
which are obtained from the “infinite number of conser-
vation laws” fixes a class of solutions. Changing one
value A, changes this class. A detailed discussion of
the points covered in the last two paragraphs will appear
in Ref. 18,

Actually, for the KdV and sine—Gordon case, only
one half of the {A;} can be arbitrarily specified, every
other one being identically zero, Recall that in these
two cases, the p's and ¢'s for the nonlinear wave could
only be identified at the expense of an embedding. The
wave dynamics described by KdV (or by sine— Gordon)
lives on a constraint in this larger space. In “scatter-
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ing-data space” this constraint takes the form A,; =0,
j=integer.
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A stochastic Gaussian beam. I
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The propagation of a Gaussian beam in a strongly focusing medium is considered. The medium is
subject to random deformations of the beam axis. The average intensity and the intensity fluctuations
on the beam axis and the mean population remaining in the fundamental mode are computed when
the random inhomogeneities are weak and the distance between the source and observation points is
large. All results for randonr axis deformations are compared to those obtained earlier for random
width perturbations. The mean intensity off the beam axis and the mean population transfer into

higher modes are also discussed.

1. INTRODUCTION

Consider the initial value problem for the Schrédinger
equation,

200, =A0¢ - [y —enft, )y, O0<e<<1,
PE=0,y)= (1/V1) exp(-y2/2).

Herey =(v1,y3), 7=(m,n), and y* = v{ +y%. Physical-
ly, ¥ represents an electromagnetic beam traveling in a
focusing medium subject to random imperfections. The
t axis denotes the beam axis, In (1.1) the parabolic
approximation to the reduced wave equation has been
employed,! In this model the fundamental mode of the
beam is initially excited.

1.1)

The stochastic perturbation 7(Z,w) models random
deformations of the beam axis, It would correspond to
misalignment problems in a lens system. In Ref, 1,
we have studied a stochastic perturbation which de-
scribes random changes of the focusing strength, or
“width of the lens”

20, =AY =~ [1 -eB(t, )]y,

1.2
0<e«1, (.2)

B a scalar process,
W(E=0,y)=(1/Vn) exp(-y?/2).

One purpose of this note is to compare the effects of
random axis deformations, as modeled by (1.1), with
those of random width changes, as modeled by (1.2).

The process N(f,w) is taken to be mean zero and
stationary,

E{n(t9 ° )}':O, E{ni(t, ° )77,(8," )}:R” (t_s). (1.3)

In addition the usual mixing conditions are assumed, in
particular,

1.4)

The goal of this note is to compute the expected value
of certain functions of the random field ¥ [as defined by
(1.1)] in the limit of weak stochastic perturbations
(0 <e<< 1), uniformly through large beam distance
({=0(7/e?), 7 finite). All results for random axis de-
formations are compared with those under random width
changes. It should be noted that in all cases rather ex-
plicit formula are obtained.

R;;(s)~0 as s—o sufficiently rapidly.

In particular, we compute the expected value of the
intensity,

E{|u(t,y) |, (1.5a)
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the fluctuation of the intensity,

E{ |y(t,w) |2 - E{| 9, )| 2% (1.5b)

and that portion of the beam which remains in the funda-
mental mode,

E{| <hgo|9@®)> |2 =E{] [ d®(1/V7)exp(-y?/2)u(t,y)|%.

(1.5¢)

In addition, the expected modal transfer into the (p —g)t*
mode &, is studied,

E{| [ d? n, 9t 7) |7 (1. 50)

Marcuse? has studied an initial-boundary value prob-
lem closely related to (1.1)—(1.2). His problem is more
realistic than that studied here; consequently, his ap-
proach (a modal analysis) is harder to justify with
estimates of accuracy. We view the present work, as
well as the work in Refs. 1 and 3, as complementary to
studies such as Ref. 2. By using an idealized initial
model, we are able to obtain explicit results within that
model . and to give formal error estimates within the
model.

Finally, we mention that (1.1) and (1.2) could also
be interpreted as quantum mechanical harmonic oscilla-
tors in which the ground (lowest energy) state is excited
at t=0. The two types of randomness described would
(i) shake the equilibrium position of the oscillator, and
(ii) shake the “spring coefficient,’ The problem is to
compute the manner in which each type of randomness
distributes the population from the lowest energy state
into higher ones.

In Sec. 2, we describe the key representation. In
Sec. 3, we discuss the average intensity and its fluctua-
tion. In Sec. 4, we describe the modal transfer.

2. THE KEY REPRESENTATION

For the moment, fix a realization of the process 7,
and hence of the random field ¥ as defined by (1.1).
Motivated by geometrical optics, we seek i of the form

i, y) =A@ expliS, )], (2.1

A short computation based upon this ansatz verifies that
¥ can be written as

Wi, y)

= (2.2)

71: exp(it) exp(~y?/2) explie’* &, 1)y’ +id (1],
m
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where A(t,w) and 5(¢,w) are defined by
%A= —cexp(-ith, A(=0)=0,
3,6 = zexp(2it)A + z21?, 6(t=0)=0.

Integrating Eqs. (2.3) and inserting the.result into
(2.2) yields the basic representation

P,y
= (1/Vr) expit) exp(~ y2/2) expleA, (¢ ! +€*B()], (2.4)

where 4, =A% +iA§, B=B%®+iB, and

2. 3a)
(2. 3b)

AR= fot sin(t - o), (0)do, (2.5a)
Al=- fot cos (t — o), (0)do, (2.5b)
BFf=_ %fn’a'ofo"dolfo"do2
X sin(20 — o, = 0,7, (0, 1 (07,), (2.5¢c)
=3 fot dom*(o) + f: do, f do,
X 08 (20 — 0, — 0,)m, (o 1, (0,)). {2.5d)

All computations in this note are based upon the key
representation (2.4)—(2.5). For convenience, we list
those quantities of primary interest (1.5a,b,c,d), in
terms of A® A’ B® and B':

Itt,y)= |9, 9|
= (1/m)e" 7 exple2AF ()’ +22BR ()], (2.6a)
I, )= |G |0, * N2
e A xR0+ (470 + A4,
p,=0,1,2, 54>, (2.6b)

J,(8), Ed. (2.6b), denotes the modal transfer function
from the fundamental (k,) mode at =0 to the pgth
mode (k,,) at £=¢. To obtain (2.6b) requires some com-
putation. First realize that the mode 7, is defined by!

hyo(¥) = (@2%p 129 1)/ 2H, (y H (v, exp(-¥°/2), (2.7a)
where H,(y,) denotes the pth Hermite polynomial.*
Inserting /,, and § as represented by (2. 4) into (1. 5d)
and using the two identities,*

“ 2

( BB e+ e =292 5 ), 0,0 ) (f - )

1) (2. )

E[k' (b —20) ] H, 4, (9) = (2.1c¢)

yields (2.6b). In (2.7b,c), [p]= p 1fp is even and is
(p-1) if p is odd; () denotes the binomial coefficient.

(2y)"

In the rest of this paper, we compute expected values
of (2.6a,b) in the limit as ¢ —~ 0 uniformly in ¢ through
t=0(7/e?), 7 finite. Frequently such computations are
carried out by a perturbation theory using some form
of Khashminskii’s diffusion theorem. This technique is
used in Ref. 1 for the case of random width perturba-
tions. Here key representation (2,4)—(2.5) is so ex-
plicit that such techniques are not needed. In comparing
with Ref. 1, notice there that Eqs. (2.3a,b) are
replaced by a variable coefficient linear differential
equation whose solution is not known in closed form,
This ordinary differential equation is analyzed by
Khashminskii’s theorem. Here we merely integrate
(2.3a,b).
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3.lTHE INTENSITY AND ITS FLUCTUATION

In this section, we compute the expected value of the
intensity and its fluctuation and compare these results
for random axis deformations with the analogous results
for random width changes. The parabolic approximation
(1.1) to the reduced wave equation is most accurate on
the beam axis (y=0).% There the intensity is given by

I(t,y=0)=(1/7) exp[26BE (¢, w)]. (3.1)

For finite, fixed ¢, the expected value of the on-axis
intensity remains constant,

E{I{t,y=0)}=1/1+ O?),

However, as ¢ increases, this expected value will suffer
large distance effects. To compute these effects, con-
sider the definition of B®(t,w), Eq. (2.5¢),

fdof dolf do,

% s8in(20 — 0, ~ 0,)1, {0, J*{o,).

¢t fixed. (8.2)

BR(t W)= -
(3.3)

Interchanging integrals and evaluating the integral over
o first yields
£ t
BR(t,w)zéfo d°1f0 do,
X [cos (2t — 0, ~ 0,) = cos(a, = 0,)]m, (o)1 (0,). 3.3

We are interested in the behavior of (3.3) for large ¢;
therefore, we consider the time average

BR = —_
B }113 4t daf do,
X [cos (2t =0, = 0,)=cos (o, = 0,)]n, (0,)7 (0,). 3.4)

To compute this limit, we assume that the process 7
belongs to the class of stochastic processes for which
this limit is the same for almost all realizations.® For
this class, the limit BF is equal to its mean value,
Thus,

BR=E{B®} = hm——

dU/ do,
t-oe.

X[cos(2t -0, - 02)~ cos(o, - 0, )1E{n, (0,)n*(0,)}. (3.5)
Using the stationarity of the process 7, we compute
from (3.5)

BR =3 [" docosoftr[R(0)]},
R,,(0)= E{n,(c+ s, ()} (3.6)

Assumption (1.4) guarantees that this distance average
is finite.
Returning to (3.1), we use (3.5) to calculate the large

distance behavior of I(f,0) in the limit ¢ — 0, /o, €%/
=7 finite,

I(,0) = (1/r) exp(- 2¢%t| B?|),
and, since BRis independent of realization, we obtain
E{I(t,00} ~ (1/7) exp(~ 26| BE|) + O),

RANDOM AXIS CASE.

> 1, 3.7

(3.8A)

Expression (3. 8) is uniformly valid through f= 0(7/€?),
Certainly for finite, fixed ¢ it reduces to (3.2).

Result (3. 8) is 2 main result in this section. It states
that weak random [0()] axis deformations cause an O(1)
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exponential decay in the distance scale 7=e? ¢ of the
on-axis intensity, B®|. In Ref. 1
we found that weak random [O()] width changes left the
intensity unperturbed

E{I(t,00} =1/n+ Of).

uniformly through = O(7/€?),
Thus, random axis deformations induce a stronger ef-
fect on the intensity than do random width variations.

(3.8W)
T finite.

Experimentally misalignment causes more problems
than width uncertainties.” In Ref. 5, we have shown
that misalignment causes larger errors in the parabolic
approximation to the reduced wave equation than random
width variations. Here we see that even within the
framework of the parabolic approximation, misalign-
ment causes a stronger effect on the intensity than does
random width variations.

Using exactly the same procedure, we compute the
fluctuation in the on-axis intensity,

E{1(,0) - E{I(t,0)}}*}=0+ Of), RANDOM AXIS CASE,

(3.94)
uniformly through /= 0(7/€%), 7 finite, At first glance
this result is somewhat surprising. However, it is easi-
ly understood after noticing that the random function
I(¢, 0) depends upon the input stochastic process 1 only
through “averages” such as

1 (¢ ¢
et f_f do’_/ doyn, (0,)1%(0,) cos (o, = 0,).
0 0

Thus, ergodicity will force the limit (e~ 0, ¢ —«, €t
=7 finite) to be almost surely independent of realiza-
tion. This in turn forces results such as (3.9A).

In any case, result (3,9A) is certainly different from
the random width case, where, in Ref, [1], we found

E{[1(,0) - E{I(t, 00/} = (1 /7*)[exp(2e2yt) = 1]+ O(e),

RANDOM WIDTH CASE, (3.9wW)

uniformly through {=O(7/€?), 7 finite. Here
ygfw EB(s + 0)3(0) cos2odo.
0

Off axis (y #0) the situation is more complicated. Not
only is the parabolic approximation less accurate,® but
calculations within the parabolic approximation seem
more difficult. For example, consider computing the
expected value of the intensity I,

1{,y)= (1/m)e™?* exp[26AR (¢, w )7 + 2¢2BR (¢, w)]. (3.10)

As we have seen, the term e2B®{¢,w) =¢% B® as t—
and hence contributes to the large distance behavior of
E{I{t,y)}. The term eAF(t,w)y’ in (3.10) also contributes
to the large distance behavior, although its effect is
harder to calculate. It is easy to see that it does not
contribute in a distance of O(1/e):

t
Af (¢, w) =llimtl sin(t ~ o), (0)do

P o
=t f: E{AR}

—tlim+ (3.11)

limy tsin(t—o)E{nj(o)}do—_—O

0
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by the mean zero property of ;. To see that this term
does contribute in a distance of O(1/¢?), we expand
(3.10) as a power series in €:

I(t,y) = (1/7)e" 7" exp[ 26 B* (¢, )]
X[1+2eAF (t, w)y! + 22AR(E, )AR (t, w Wiy* + O(EM)].
(3.12)

As t—-=_ (3,.11) shows that the O) term in (3.12) goes
to zero. As for the O(e?) term:

AR, w)AR (L, w)

/ daf do, sin(f — 0,) sin(t - 0,)n, (0,)n ()

ilim

—t}1mt[ doJ do,sin(¢ — 0,) sin(¢ - 0,)
x E{n, (0,)m(0,)}

TR
:t}lffft— . do, | do,
o

X[cos(o, = 0,)= cos (2 ~ 0, = 0,)|R (0, - 7,)
=tf_:Rjk(or)cosodo, >0, (3.13)

Here we have again used the property that averages
over ¢ are almost surely independent of realization.
Combining (3.12)—(3.13) yields

E{I(t,y)} = (1/m)e™” exp(~ 2¢2t | BE|)
X[1+ 2ety,y' 9"+ O((eA(t))) ],

where

(3.14)

¥;4= [ Rpp(0)cosodo.

Formula (3.14) again shows that random axis defor-
mations lead to an exponential decaying factor in the
intensity as ¢ increases. In addition, for any fixed €%

, (3.14) shows an increase in the intensity just off
the beam axis. The random axis deformations cause a
local spreading of the beam on the T=¢% distance scale.

One is tempted to try to correct the secular behavior
displayed in (3.14) by some “two-~timing” scheme such
as discussed in Ref, 6. However, scaling the distance ¢
leads to results such as

E{I(t,y)} = (1/7) exp(- 2¢ | B |)
X expl~ (6, = 2%y, )y7y"].

Comparing this result with I(¢,y), Eq. (3.10), clearly
indicates that it cannot be much more accurate than
(3.14).

4. MODAL TRANSFER FUNCTION

In this section we compute the expected value of the
modal transfer function J,,, with particular emphasis
upon that portion of the beam which remains in the fun-
damental mode, J,,. From (2.6b) we obtain

Too(®) = | (o | 9(1)) |2
=exp((2B2(t,0) + [A*¢, ) +AR (¢, 0))/4]).  @.1)
Thus, we must compute the long distance behavior of
Re[A%(t,w)]. From (2.5a,b) we obtain
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Alt,w) =1 ft et n(0)do,
0

A(t,w) =~ [ do, [} do, exp[- i(2t - 0, ~ 0,)In, (0,0 (c3,).
Thus, Re[A?(t, w)] is given by

Re[Az(t, w)]= (=) j: do, jo‘t do,cos (2l — 0 — 0,7, (01)nk (0,)

As t -, this term is O(1) as the following computation
shows:

Re[4%(t,w)]=- [*do, [* do,cos @t - 0, — 0, )n, (0,17 (0,)

=—- [*do, fot do,cos (2t = 0, = 0,)tr R(o, - 0,)
0

wl-

[t do_trR(o)( [* ™ do,cos(2t~0,)
0 Ya.
2t +or_
+ do,cos (2t —0,))
.

= —sin2¢ ft do trR (o) coso
“0
:—sinthowdotrR(o)coso as ! — oo

In this computation, we have used the fact that averages
over { are almost surely independent of realization,

stationarity, and property (1.4). Thus, we obtain
Re[A%(t,w)] » = sin2/tr(y,) as 1 —w, (4.2)

where v, is defined by (3.14). Equation (4.2), together
with the long distance behavior of B® (¢, w) already
calculated, yields

E{J oot =expl— 2| BR | €2 = 5€°tr(y ) sin2(] + Of),
RANDOM AXIS CASE, (4.34)
uniformly in ¢ through /=0(7/¢?), 7 finite,

Result (4.3A) is the main result of this section, It
shows that the population decays from the fundamental
mode exponentially on the distance scale T=¢% with
decay constant

2|BF| = | coso E{n, o+ s)n, ()}

Result (4. 3A) should be compared with the random width
case for which we found in Ref. 1

4 exp(— 762//”4)f p? exp(-p?)
E{J ()= dp+ 0€)
oo} Vo o’ coshpVyeit P ’

RANDOM WIDTH CASE,

(4.3W)
uniformly through ¢=0(7/c?), 7 finite, where
y=3 fo"’ cos (2s) E{B(s + 0)p{oNds.

We conclude with a few comments about the modal
transfer from the fundamental mode at /=0 to the pgth
mode at distance ¢,

I O)=[e270 (| A |2p(]|4,] )9/ 20p141]
x exp(e2[2BR(f) + [A2(1) + A*2(1)]/4})

Notice that the over-all exponential decay factor is the

same for all modes; however, the modes above the fun-
damental have an additional multiplicative factor. This

factor forces the behavior

(4.4)
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1, p:q:O,

0, otherwise,

JPQ(O):{

as it must. Also notice that, except for (p=0,¢4=0),
(p=1,4=0), and (p=0,g=1), the average value of
J,, will depend upon higher moments of the process 1.
These will yield a behavior of the type

B, (O =c,, €2 P* exp[~ 2| BR e
- 5e2tr(y,) sin(20)]+ Of), RANDOM AXIS CASE,
(4.5A)
uniformly through ¢= O(7/¢?), 7 finite,

where the constants ¢, will depend upon higher moments
of the process 1.

Any given mode, once excited by the random process,
decays exponentially with a decay rate which is com-
mon to all modes. The random disturbance initially ex-
cites the (p —g)th mode by transferring the population
from the fundamental mode. This transfer process into
the (p —¢)th mode occurs as the power (2/)?*, Thus,
the maximum population for a given mode p-g is
achieved at a distance 7__ =¢€? _ which is inversely
proportional to the sum (p +¢). The population cascades
away from the fundamental mode, Very similar results
were obtained for the random width case in Ref, 3, al-
though the dependence on higher moments did not appear
there.

Finally, we remark that these results are actually
more general than would appear. They do not depend
in any essential way on the “ergodic-like” hypothesis on
7 which we used for purposes of calculation. We could
have used arguments of the Khasminskii type to see this,
However, representation (2,4)—(2.5) is so explicit that
the above arguments seemed the most direct means of
computation.
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We prove Lorentz covariance of the field algebras in the Yukawa, quantum field theory, thus
completing the verification of the Haag-Kastler axioms for this model. We also study the
energy-momentum tensor of the theory. In particular, we prove an estimate of the form P(f)*
< const(H (g)+ 1) dominating local momenta by local Hamiltonians. Most of the results are a
consequence of this estimate. These methods apply also to the (¢*), model.

1. INTRODUCTION AND RESULTS

The Yukawa, quantum field theory is described by
fields ¢(x,?), ¥(x,t) representing a boson and a fermion,
respectively. The inhomogeneous Lorentz group in two
space—time dimensions is the three-parameter group

{a, Agt(x, ) = (a, + x coshB + ¢ sinhp, a, + £ coshB + x sinhp).

Lorentz covariance of the theory requires that corre-~
sponding to each transformation {@, A} there is a unitary
operator Ua, B) such that

Ula, 8)p(h)Ula, B)™ = ¢ (a, Agh), (1.1)
Ula, B)p()U(a, )™ = S g)v(a, Agh). 1.2)
Here ¢p(R)=[dxdthix,t)¢(x, 1), Yh)=[dxdth(x, )P(x, ),

he S(RY), and {a, Ak is defined by {a, Aglh(x, )
=h({a, A x, D). S(Ap is the 2X2 matrix

1 0
S(AB):eBw/?’ .},5:[0 _ J.

In this paper we show how to construct such a unitary
operator Ula, 8) for fields localized in a bounded region
B of space—time,

Theorem 1.1: For each Lorentz rotation {a,AB} and
bounded region B of space—time, there is a unitary
operator Ula, B) satisfying (1.1) and (1. 2) whenever
supp/ C B.

Lorentz covariance of the infinite volume field
algebras now follows immediately, as in Ref. 1 for the
&4 theory. This completes the verification of the Haag—
Kastler axioms for the Yukawa, model.

The Egs. (1.1) and (1. 2) are valid as identities for
self-adjoint operators and for bounded operators, re-
spectively. Ula, 8) may be chosen to be strongly con-
tinuous in @, 3 on any closed interval.

For notation and estimates for the Yukawa, model
see Refs, 2—6, We start with the time-zero symmetric
energy—momentum tensor 7,,=T,,:

Ty () = Tolx) + g () T (%) + g2 (%) T (x),
Ty (%) = Plx),
where g(-)= 0< C7(R) and
To(x) =572+ (V) +mP¢? i~ § 1 oy VY — Viyly + 2MYy ¢,
T = D
1x) =1 A @.3)
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2
Tc(x):—E—ézﬂ-:d)Z:,

P()==3:1V + V1= 39y VY- VI 0p:,

Here E and 5m? are the infinite vacuum energy density
and boson mass renormalization counter terms. For
real f, f=1 or fe §(R), we define

T(f)= [ dx f(x)Toy(%), P(f)= [ dox f(x)Tpy(x),
M(f)=Tf) (f+1). (1. 4)

T(f) is given by a limit as a momentum cutoff « is re-
moved, see Sec. 2. In particular, 7(1) is the Yukawa,
Hamiltonian with a space-cutoff g(-):

H=H(g)=T(1)=H,+Hg)+C(g),

while P=P(1) is the global momentum. We will prove,
as one expects on formal grounds, that T(f), P(f), and
M(f) generate time translations, space translations,

and Lorentz boosts, respectively, for observables which
are suitably localized. Our proof depends on estimates
proved in Sec, 2:

+ T(fY<const(H+1D), P(f) <const(H+I)?,
(8, T(f)]=P(f"), (1.5)

as well as the known positivity and self-adjointness of
H., We do not require positivity of the Lorentzian M(f).
For simplicity we consider throughout this paper only
f(-) for which f=1 or f=x on {x : dist(x, suppg) <1}. For
more general functions f, see Ref, 7.

For a bounded region B of space—time, we define its
casual shadow on the x axis by

Iz=[b,b.], b,=xsup{zx+|t]:(x,0)cBL

Corresponding to a Lorentz transformation {a, A}, we
define

{a, AgB={(x", t") : (x’", t") ={a, AgHx, 1), (x, t) e B},
and for a given Lorentz transformation {a, ABO} and
bounded region By, we define

B=Blay, B)= Y l{a,AB}BO.

a;l=lag, ¢
181 <18yl

We now choose g(-) above so that g(x) =1 on Iz and for

the remainder of the paper g(-), a,;, B;, and B, will be
fixed. We will also need the algebras %(B), ¥ ,(B) gen~

Copyright © 1975 American Institute of Physics 104



erated by bounded functions of fields localized in B and
of time-zero fields localized in I, respectively, Our
principal result is:

Theovem 1.2: For fe S(R) or f=1, T(f), P(f) define
self-adjoint operators, any core for H is a core for
T(f), any core for H, is a core for P(f), P(f)
<c(NHH+D?, and T(f;+£) = T(£) + T(f), P(fy+fy)
= P(fy) + P(f,). Furthermore, T(f) maps D(H?) into D(H),
exp[iT(f)t] leaves D(H) invariant, and [{H, T(f)]=P(f').
The operator Hexp[iT(f)¢] is strongly continuous in ¢ on
D(H) with strong derivative iH exp[i T(f)t]T(f) on D(H?)
and satisfies ||H exp[i T(f)¢]6ll < exp[c (f)]I|H6ll, 6 < D(H).
Similar statements apply for M(f), fe S(R).

Theovem 1,3: If f=1 on suppg, then the unitary
operators

U(a, B) = expliay T(f)] exp[~ ia, P(f)] exp[¢BM(f)

generate the Lorentz transformations (1.1), (1.2) for
fields localized in B; and for la;l < 1y 1, 18] < {§l.

The proof of Theorem 1, 3 depends on the following
theorem which, along with Theorem 1.2, is proved later
in this section:

Theovem 1,4: If f=1 on suppg and suppkC B, then as
forms on D(H)xD(H):

[ZA/I(f), ¢(h)] = ¢(xath'+taxh)’

[EM(f), p(h)] = = dlx 8,k + 1 2.0) + 3ys5p(h).
Also T(1 —f) and P{1 - f) commute with 9,(B).

(1.6)
1.7

Proof of Theorvem 1, 3: First we consider the case of
pure Lorentz rotations. For 6 € D(H?), f=1 on suppg,
supp/C B, we define

Fy(B;x,t) = (0, exp[iM(f)Blo(x, t) exp[- iM(f)B]6),
Fy(B;x, 1) =S (A6, exp(id(f)BI(x, t) exp[~ iM(f)B]6)

By Theorem 1.2, F;(B;x,¢) and (3F,/28)(8;x,t) are de-
fined and continuous in B, x, f—note that ¢(x, ?), ¥(x, {) are
continuous in x, # on D(H)XD(H). For arbitrary h c C;(B)
we define

Fy(B;h) = [ dxdth(x, ) F,(8;x,¢t),
and from Theorem 1, 4 we have

d

d—BFi(,B; h)=F;(B; = (x 8, +t 23 )h).
By a result for partial differential equations, ! it follows
that for all 8, x,¢ with |8] < 18;! and (x,#) € B,

F,-(B;x, t) :F,-(O;Aﬂ(x, t)).

By continuity, this proves (1.1) and (1, 2) for Lorentz
rotations on D(H) XD(H), even without smearing in x, #:

U0, B)o (x, HU(0, B)™ = ¢ (A4(x, 1)),
U(0, B)d(x, HU(0, B)™ = S(A ) d(A4(x, 1)),

The extension to operator identities on smearing with
ke Cqy (By) is immediate, noting that U(0, 8)D(H) < D(H),
that D(H) is a core for ¢(k), and that (%) is bounded,

The unitary operator U’(a) = exp(ia H) exp(-ia,P) is a
generator of space—time translations for ¢(Agh), P(Agh)
provided layi < lag, 1, a3l <lagql, |8l <18, and
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supph C B,. Using the Trotter product formula for H
=T(f)+T(1-f), P=P(f)+P(1-f), and Theorem 1, 4,
we conclude that U(a) = exp{ia,T(f)] exp[-ia; P(f)] also
generates translations, completing the proof of The-
orem 1, 3 and establishing (1. 1) and (1. 2).

Theorem 1, 2 follows immediately from the estimates
(1. 5) and the following general result for forms A rela-
tively bounded by a positive self-adjoint operator H,
which is proved in Ref, 8, We write A=[{H,A], R
=(H+D™, C*(H)=npy DH™).

Theorem 1.5: Let A be a symmetric form on C*(H)

X C”(H) and suppose that as forms on C*(H) XC”(H):

(1) A <const(H+I)",
(2) AR is bounded.

Then A defines a self-adjoint operator A~, any core for
H" is a core for A”, A~ maps D(H™) into D(H), and

exp (A1) leaves D(H) invariant. The operator Hexp(A™?)
is strongly continuous on D(H) with strong derivative

iH exp(iA~t)A on D(H™) and satisfies

|H expGA1)6ll < exp(c [¢|IHBI, 6 D(H).

Proof of Theorem 1,4: Since f=1 on suppg we have
T(1-f)=Ty(1-f). By Theorem 1, 2, the domain /) of
vectors with finite numbers of particles and wavefunc-
tions in Schwartz space is a core for T(1 - f) and
P(1-f). On/), explip,(f,)+imy(f>)] has a power series
expansion and by explicit computation we find that
Ty(1-f), P(1-f) commute with ¢{f7), 7o(fe}, %(f3),
and $i,(fy) on /) X/), provided suppf;c I;. A subscript
zero denotes time-zero fields. Thus T(1 -f), P(1-f)
commute with #4(B).

To prove (1. 6) we write M=M(f), and then for
6< D{H?)

(6, M, p()]6) = [ dt(8(t), [iM(= 1), do((+, 1)}6@), (1.8)

where 6(f) = exp(- itH)8, M(t) = exp(itH)M exp(—itH), By
Theorem 1,2, My < D(H) for y< D(H?) and

M(= tyy =My - [ " ds exp(~ isH)P((xf)") explisH)y.
Substituting into {1.8), we obtain

(6, [iM, ¢ (n)]6)
= [ dt(6@t), [iM, ¢, (-, 1))]16(2))
- [ at f*as(6( = ), iP(F)), $(0(-, 1), $)16(7 - 5)).
1.9)

In Theorem 2.12 of Sec. 2 we compute the commutator

[iM, ¢o(F)] =mo(xfy), suppfic Iy, (1.10)
on D(H)xD(H), Thus the first term in (1. 9) reduces to

S are@), m(- k(- , 0)6(t) == (8, ¢(x 8,1)6),

using the boson equation of motion. In the second term
we write P((xf))=P+P((xf)’ - 1). For 0<|s| <|¢| the
spectral projections of ¢ (k(-,¢), s) are contained in
#,(B) and since (¥f)' =1 on suppg, ¢{(-,¥),s) commutes
with P((xf)*—1). Noting that P generates space transla-
tions, the second term in (1. 9) reduces to
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- [dt [ as(et~s), 6@ k(- ,1),5)8(t-s))
== (6, ¢(t3,2)6)

since the integrand is actually independent of s, This
completes the proof of (1.6), as forms on D(H?) X D(H?),
Extension to D(H) XD(H) is immediate by continuity. The
proof of (1, 7) follows by similar methods, where now by
Theorem 2. 12, if suppf;Clg

M, (1))
= voly o 3, 11) + My () + My do) (1) + 3y 8 (f))
(1.11)
Using the Fermi field equation of motion this reduces to

[iM, ¥y (f1)] = (atd)) t:o(xf1) + %‘)’5¢o(f1)-

2. MOMENTUM CUTOFFS

Section 2 deals with the momentum cutoff operators
and their limits. In 2 A we define T, (f), P(f), and H,
and in 2 B we show that T,(f) and P(f) are relatively
bounded by H,, uniformly in k. In 2C we consider the
commutators [iH,, T.(f)], [iH,, P(f)], and we discuss
the limiting operators T(f), M(f) in Sec. 2D.

A. Definition of T, (f), P{f}

We introduce momentum cutoffs as in Ref, 2 by means

of a cutoff function y, (%, py, p;) = X &/ k)X (p1/K)x(b2/K),
X € Cq, x(0Y=1, The quantities (1.3), (1.4) are then
given as follows:

Ty(H) =T+ T(f), P(f)=P(f)+P(f),
T(f) = [ dydky[ T (f; Ry, kp)a* (ky)a(= ky)
+ Ty(f; by, ko) (@* (ky)a* (ky) + a(= ky)a(— ky))],
TH(f) = [ dpydps[ Ty (f; b1, b2) (0% (P1)b(= 2)
+b"*(p1)b" (= pa)) + Ty(f; 1, b2) (0% (P1)0"*(P2)
+b'(= p1)b(= p))},
T4l ) = [ dkdpydpy[wil Sk, b1, 22) (0% (D1)b"* (2)
+ 0" (= p)b(= o)) +wi(f; &, Py, Do) (b*(D1)0(— p3)
+b"*(p)b’ (= p)))(a* (k) + a(- k),
Tl ) == [ dfO[E, +30m%: ¢*(x) : ].
Pb(f), P’(F) are given by expressions similar to T°(f),
T (f) but with kernels P;(f;-,-), and in addition the co-
efficient of aa or b'b is negative. We will reserve the
variables k,! for bosons and p, g for fermions and trust

that no confusion will arise. The kernels and renormal-
ization constants occurring above are given by

Ty(fy ey, o) =F oy + k) BT pt i)™ 2 (gpiy = iy + %),
Ty(fs Ry, Ry) = F (g +Ry) (327 g o)™ /2 (= pybty = Ryg + %),
T((f; P1,P2) zf(lh + Do) (wy + widwy (Py, Pa)y

Tof; 51, 02) =F (by + 02) (@ = @)y (p1, Do),

P (f; Ry, k) :f(k1 +k2)(8w1uz)" (- iy + Haky),

Py(fy by, ko) =F (g + k) (32m 11 110) ™ /2= ikey — iRy),
Py(f; 1, 02) == F (1 + o) (b2 — D)y By, Pa),
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Py(f; 51, 02) =1 (By + p2) (03— D) wa By, 2,

we(f3 Ry b1, b2) = = A@) T 2F (R + py + po)wy(py, = po)
XXk, D4,y Do),

wi(fi R, by, 09) == Map)™t 1% (k +py +P2)wa(py, = ba)
XXk, D1, Da),

A.2
Ex:";‘ fdPidpzﬁ(PﬁPz)'i(u(Pi +Pa) +wy +wy)t

X |wy (D1, ~ D)X (= by = Doy P15 Do) |2 + const + 0(1),

e _ X - £ s)z
Gmk——zﬂ/dgw(g) Xx(oy 2,—2

+const +o(1).
The constants in these terms are independent of x, while
the o(1) terms vanish as k — . The w;{py, p,) are

wy (b1, b2) = (3210 1we) ™ 2 (U( D) VU= pa) + U= py) v(p,)),

wy (b1, b) = (B21wywe)™ 2 (WP (p2) = V(= py) U= py)),
and

pk)=E+mHE w(p)= (Pt + MA/2,

v(p) = (w(p)+p) /2

We note the following properties of the functions
wi(piapZ):

Lemma 2, 1: w;(pq, py) are symmetric in py, py,
llfl(ﬁnpz) >0 and 1101(P1,p2) 12+ lwz(l’ni’z)iz = (877)'1. With
£=p1— Dy, N=DP1+Dy

wy(Pg, o) <@ (E)w()™?,  |wy(py, p2)] < 0w ()2,
| (1, 08) = w0, (1, 02) | <2]D§ = Dy | (wy + ),

It is easily checked that the quantities defined above give
operators on D(H,), noting that Ty(f;-,-) and Py(f;-,-)
are in Ly(R?). The cutoff energy density is

Tk(f) = To(f) + Tl,x(fg) + TC,K(ng)

and, in particular, we define the cutoff Hamiltonians
H,=H(g,«)=T,(1), It can be shown that our choice of
energy counterterm differs from that of Glimm and
Jaffe? only by

I glI3E, - Ey(g, &) | = const +o(1).

Choosing the constants in E, so that inf spectrum H,=0,
our H, therefore agrees with theirs.

B. £ 7 (), 2 P{f) <const{H, +/)
We introduce an auxiliary lower cutoff p as in Ref. 2
by making the change x.(k, o1, 02) ~ X, ,(%, P1, P2) Where
Xuy 0B, P15 P2)= X (B, b1, p2)(L = 0,(py = D))

Here 6,(p)=1, Ipl <p, 6,(p)=0, 1pl >p. We denote the
sum of the finite energy and mass renormalizations by
AC, (f). For fe S(R) of f=1 the corresponding operators
T,,,(f) satisfy:

Lemma 2.2: Let ¢>0, 7>0. Then for sufficiently
large Ky, py and k= k3, p= p, there are constants uniform
in ¢ with

H.-H, ,+AaC(g" = —eN, - const,
i{TK(f) - TK,p(f)} < ConSt(N1'+1)-
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Proof: The first estimate is Lemma 7.1, 3 of Ref, 2
while the second follows by the method of Lemma 6. 3.5
of Ref, 2, The conditions = xy, p=p, are required be-
cause of the finite mass renormalization,

For ;< 7<1 we choose nonzero constants ¢(7) >0,
a(1), B(7) which satisfy the inequality

Jar{lar (fik, D] + 18Pk, D[} <E) = p (k) - cule)”
2.1)

and the corresponding inequality for fermion kernels,
We denote the diagonal parts of T((f), P(f) by Ty(f),
P,(f). We now apply the dressing transformation of Ref.
2:

b(p,e)—b(p,€)=b(p,e) +[b(p,e), TWE ()],

TS, (8)= [ dbdpydpans, (g3, b1, b0 (510 (po)

x{ a*(k) +a(—k)}
B+ Wy +ws

Wy + Wy
¢N,— aT(f) - BPy(f)= 0, obtaining an

to Hy=H,—

expansion:

0<Hy=—-cN,— BP,(f) +Hy - aH{ + Hy — aHJ - B(HF + HL),
(2.2)

H, contains terms resembling H, ,, H contains similar
terms resembling 7, ,(f) - Tz(f) while H,, Hf, and HY
include all other terms. For given €> 0 we prove:

Lemma 2. 3: For all  and for p = p, sufficiently large
(i) =(H;-H,,+AC(g))<e(N,+1),
(i) +{H] - (T,,,(f) = To(fN}< const(N,+1),
(iii) H,—- aHi - BHT + HY) < (N + 1),

Proof: (i) is proved in Ref. 2, The proof of (ii) is
similar, We find (for the diagrammatic conventions
used, see Ref, 4)

BI = (T, () - To()) = ~T>r+ }r >r S5

= Tk, o(f82). 2.3)

The vertices Ty, f denote the kernels T{f;-,-) and
i, o(f;+,+,+) while T, represents the kernels of
T'W¢ ,(g). The diagram

T >
- >T
has an effective kernel 7,*I',, where
(Tf* rg)(k7p11p2) = f dl Tl(f: k’ - l)r‘g(lyppr)’
which we compare with (LT, ) (&, py, po) = w (BT (R, Dy, Po).

Using the properties of w;(py, p,} from Lemma 2.1 and
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the properties of the cutoffs y,, we find

(Tf*rg)(k!piyp2) = (ur‘fg)(k’piyp2) +A1(k’pbp2)

where for 7> 0 and p > p;(7) sufficiently large,
1= 2A (%, by, p2)lly <€. By an N, estimate it follows that
for p>p,

{>r- Dofranen

Similar estimates apply to the second and third terms
in (2. 3). Thus combining these estimates and noting that
(b +wy +wy)Ty, =fz, we have

i{ T,>r+ }T* >F' >fg} <e(N,+1).

In this way, we find that (2. 4) and the corresponding
estimate for convolution with a fermion momentum
allows a complete cancellation of diagrams in (2. 3), to
within terms dominated by e(N,+7), plus the finite re-
normalization term AC,(fg?) which is dominated by
const(N,+ 1), This completes the proof of (ii).

(2.4)

We now introduce the operator W on L%(R) with kernel
Wik, 1) = u(R)o(k +1) — aTy(f; &, 1) = BP(f; &, ).
There is a corresponding definition for the fermion

case, By (2, 1)
0<sWs<2p or 0sW<2uw, (2. 5)
where [, w are multiplication by (-), w(-). Then

Hy - aHy - B(HY + HY)
) N
cZim ISt li‘a*DVr

- [ dp dgB(py*W(p,q)B(= q) + (b—b’)
+ [ dk dLA(RY*W(k, DA (= 1) - BHT,

where
,F<"’

The Z; are given in Ref, 2 and dominated there by
€(N.+I), HY contains diagrams identical to H{ with T re-
placed by P, see (2.3), but using the equivalent of (2, 4)
and combining terms in groups as for H we find the
resulting terms are dominated by €(N,+1), T> %, with-
out cancellations being needed—a consequence of the ap-
proximate conservation of total momentum given by
integration with g(x) in H(g, ).

-p
A=<, B(p)= 1<~

The first two diagrams and the term involving B(p)
are all negative and may thus be ignored. The remain-
ing diagram has the form

= [ dk [ dpdqBy(k, p)*W(p,q)B,(k, - q)

PR VW“'
ST , —
<2 [ dk [ apB(k, p)*¥&(p)By(k, p)
where
By(k,p)= " <

and we used (2. 5). Similarly,

[ ardiAR)* Wk, DA(=1) <2 [ dRAR)*T(R)AR).

Elementary N, estimates give

O.A. McBryan and Y.M. Park 107



A (R) (N, + D™ /3| < constp™p1=7/2420,
”B (k p)(N +I)-1/2” <constp-ﬁ -1/2 =1/2-1/2+26
X1 + )20,

and thus both remaining terms are dominated by
€(N,+1D), 7> 3, for sufficiently large p. This proves
(iif).
Taking € <c¢/5, |a| sufficiently small, p> max(py, p;)
and k = k;, we obtain from (2. 2) and Lemmas 2.2, 2.3
+{a(T,(f) - To(f)) + BR(f)} < H, + const,

and since Ty(f),
K> Ky,

P,(f) have L, kernels, we have, for

Theovem 2.4: For fe ((R) or f=1, there is a constant
independent of k with + T,.(f), + P(f) < const(H, +I).

C. Commutators with +,
For convenience, we will adopt the notation
L OYTY:(A) = [ dy dyidys 1 d(NWYOTH(w) 1 Ay, ¥1,32)
throughout this section, Thus Ty (f)=: ¢3¢ : (B, (f)),
B (£;9,51,52) = M2M)P 2 [y f) X = 9, % = 31, ¥ = 39).

Theovem 2.5: As forms on D(H,) XD(H,), f€ S(R) or

=1,

[iHe, T A= PFY 4 Cuy (i P25 Dy

where [|R,CR,|| < constx™® and for each { either

lR.D; R:®| < const or |[RI*D, Rl < const, for some
5> 0,

Proof: Elementary computations on/) X/} give

[iH,, To(f)]1= P(f') + 110 (Cy, () + 1 6Dy 1 (Ca, o (£))
£ 100y (Cy () +: DB 2 (Cy o (F))
£y (G, (F)),
[iH,, P(f)]=(Ty= m®: %+ M) (F1) = ¢U : (Cg, ()
+ d(Co, () + B0mE 2 9% 2 ((f2)),
where the kernels involved are
Ci (33,31, ¥0) =B (fg; 3, 1, ¥2) = (B (g; 3, v, ¥,

2

2
Coklf; 9, 91,39) = (6’_1 - 3;) B.(fg;9,51,93)

(fm) A A o—wm)

XB(g;¥,¥1,¥2),
Ca, (5 v, v, v2) = M(F(vy) = F(va))Bo (g5 v, ¥y, Vo),
Coulfiv, v, v1,32) = [ dz[Bo(g;9,51,2)B(fg; v/,
- B (fg;¥',v1,2)Be(g;v,2,¥2)],
Cou(f3v1,v2) = [ dk(dmp) [ dydy’ exp[-ik(y - v")]

XCy (33,37, v, v2),

z,¥2)

Colfiviaae) = (F) 2+ F)

+,f(.vz)%,2 PF1()

+)()4f()> g

3V, V1, ¥,
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Co,o(f;9)=M [ dp@rw)™ [ dy;dy, exp[ip(v1 = v2)]

ch,k(f;yyyiyyZ)y
Cs,x(f;y,yi,yz):—<f(y1)%,1 +f(y2)W +zf (V1)+éf’(,"2))
xBx(g;_Vny’yZ)’

and these commutators extend to D(H,)XD(H,) by con-
tinuity. Denotmg the term with kernel C; (f;-) by Ci s
we define C, =33, -1 Ci,x. In order to study C; ., i=1,...,5,
we obtain estimates for the Fourier transforms

| Couulf3le, b1, 13) | < consto™®u™** (wy + w) Rk +py + ),
| Co, (f; R, D1, D) | < consta™(wy +wy) hll +py +py),
’C;;, (f; R, b1, 09) | < consta™® 1 B04 Bk 1+ py + py),
|Co (F R, k7, by, Pa)| < conStE™ (1 + ' + wy +wy) ™1

Xh{k + k' +py+py),
|Cs,x(f:p1,p2)| < constk™u(py = po)*h(py + 1),

where i(-) is of rapid decrease, «,8> 0, and a + 8
<1 - 8. The fermion components of each C; , are given
by

ST (x,v) == (2/m)17? f Apy dpg exp(=ipx = ipgy)
x{1t; (by, D) (O* (P)D *(py) = b' (= p )b(-Pz))
+0;(P1, Do) (0% (P1)b(= pa) = ' *(p2)b(= p))}.

Here I'y=1, T, =y"! I, T, I';=—1i", the + signs occur
for ¢=1 and

1y(p1, ba) = 01(Py, — Pa) == v5(py, Pa) = tw1(py, ba),
1y (P, ~ Pp) =tty(py, Do) =02 Py, Do) =109( Dy, Po).

Cy, x> Co,« resemble closely the interaction Hamiltonian
and by a standard expans1on IRC;, R, = constk™
i=1,2, Renormalizations are not needed in elther case.
For Cy,, the minus sign in a*-a, from 7(v), ensures
cancellation of terms between the expansions for b*h’*
and b’b which would otherwise require vacuum energy
renormalization while the terms corresponding to mass
diagrams are not divergent on account of the factor
p%(wy +wg)™ in 1Cy, |, For C, , the relative sign dif-
ference of b*b'* and b'b ensures cancellations of all
divergences between the corresponding expansions,

_The terms Cj,,, Cy4, and Cg, with fermion parts
1y % : resemble the charge density! and are well-be-
haved because of approximate total momentum conserva-
tion, Thus elementary L, and L; — L. bounds and first
and second order estimates’™ yield k™ dominated norms
in each case.

In order to discuss [¢H,, P(f)] we introduce
Tfk(f) = TI K(f) + 2Tc, (f«,)
JelF) =130 (F) = Neodb (£2),

X . , /
Ne=- 5 / dEw ()™ (0, /2, - £/2).

Then the commutator may be rewritten as
(iH, PO = T+ Mj— 2 &2 ) () = T3 (fg)
FO(Crl )+ MNF'8) = 2 033 : (Co (/) = B, (f2").
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We decompose TF,(f) into TR+ T3, + TF., where

Tﬁ':: T;.x(f) + Tc.x(fg)’ Tﬁ';: (Tﬁ'l:)* and +, 07 or -~
denotes the component creating 2, 0, or -~ 2 fermions,
respectively.

Lemma 2. 6: For a>3, each of R% ()RS, R TFRE,
RL?TY RL/?, REITPCR, is uniformly bounded in k.

Proof: The estimates for the diagonal components of
j and Tﬁ,‘ use N, estimates. For the fermion creation
and annihilation terms we use a standard expansion’
which exhibits renormalization cancellations explicitly.

Returning to Theorem 2. 5 and using Theorem 2.4, we
see that only the ¢ and ¢ terms remain to be esti-
mated, For the kernel of ¢ we find

| Crou(F)(R) + MN,(f'g) (k)| < constk™®h (k).
Thus

IRE24(Cq, (F) + MN,(F'g))RL/H| < constk™®,

and a similar treatment to that for Tﬁ « gives

IR, : 30 H(COREN + IR : gy * (CRLY|
+|\RE : 9 T (Cy)R, M| < const™
Where Cg(' ) = Cs,n(f; ’ ) = Bn(fg,: * )-

D. The ultraviolet limit

In this section we remove the momentum cutoff and
show that the corresponding densities T(f), P(f) satisfy
(1. 5). We will need two results for forms A defined on
C*(H)xXC™(H), H=H*> 0, For the proofs of these re-
sults see Ref. 8. We write RQA\) = (H+x+D)!, R=R(0),
A=[iH,A], and we suppose that as forms:

. N
A:E Bi‘

iz
For positive n, m, 6 we define
o) =min(r,n/2+1~-8), BW)=r+n/2—m~ 0.

Theovem 2.7: Suppose R!/°AR!/? is bounded. Then
AR is bounded provided for each ¢ there is a §; > 0 with
either RB;R'®i or R!*%B,R bounded. Also AR!" is
bounded, 8> 0, if RB,R is bounded, all i.

Theorem 2. 8: Suppose either R"/2AR"/? or AR" is
bounded, A symmetric. Then A defines an operator,
essentially self-adjoint on any core for H" provided
there are ;, 0<p,; <1, such that R*iB,R!"%i are
bounded.

As an immediate consequence of Theorems 2.4, 2.5,
2.7, 2.8, we have for fe S(R) or f=1, and ¢ >1,

Theovem 2.9: T, (f)RY and P(f)R, are uniformly
bounded; P(f) is essentially self-adjoint on cores for
H,.

Theovem 2,10: RIT,(f)RY and T, (f)RZ* converge in

norm as k —~=, a>1; P(f)R, converges weakly to P(f)R.
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Proof: With the notation 6A =4,, - A, L we have
8(R*T(f)R®) = 6R*T,, ()RS, + R ST(f)RE, + R¥ T, (f)OR™,

Thus since || 8R*| < constk;®, k,=min(k,, K5), % and
T.(f)RZ is uniformly bounded, norm convergence of
R:T (F)RY follows from the estimate

||R,<16T(f)R,<2|| < constkg®,

which is proved by following the proof of resolvent con-
vergence of the Hamiltonians H, in Ref, 9. The esti-
mates are all similar so we do not repeat them here.

Norm convergence of T,(f)R2* results from the
identity

T (fIR2® = RET,(fIRE - ic(2a,2) [ dAN-*{R, (V) T, (f)R, (N2
+ R OO (f)R (IR,

where T,(f)=P(f') + C,, with, by Theorem 2.5,
R,C,RJ <constk™,

Weak convergence of P(f)R, to P(f)R is a conse-
quence of the self-adjointness of P(f) and the uniform
boundedness of P(f)R,.

We now define the energy density T(f) in the ultra-
violet limit as a form on D(H*)xD(H®), a>1:

T(f)=(H+D* - UmRIT (IR~ (H+1)". (2. 6)

From Theorems 2,4, 2,5, 2,10 we conclude that

+T(f)<const(H+1),
T(f)=[iH, T(f)]= P(F"),

on D(H'**)xD(H'**), completing the proof of estimates
(1.5) and of Theorem 1. 2. Essential self-adjointness of
T(f) follows by Theorem 2. 8 and we redefine T(f) to be
the self-adjoint closure. From the norm convergence of
T.(f)RE® we can show that

T(f)=strong graph Uim7,(f),

and as a consequence we obtain strong resolvent
convergence:

Theorvem 2.11: T, (f) converges to T(f) in the strong
resolvent sense,

There remains only the computation of the commuta-
tors of M(f)=T(xf) with time zero fields:

Theovem 2.12: The Eq. (1.10) and (1. 11) hold on
D(HYyXD(H).

Proof: The commu.ators of time-zero fields with
M,(f) are easily computed on/) X/) and by continuity on
D(H/)XD(H}), o> 2, Strong convergence of M,(f)R®
and of the other terms in these commutators gives
(1.10) and (1.11) on D(H*) xD(H®), and by continuity we
extend to D(H) XD(H).
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Lattice Green's function for B -site lattice in spinel

Michiko Inoue

RCA Research Laboratories, Inc., Tokyo International 100-31, Japan

(Received 26 July 1974)

We show that the lattice Green’s function at an arbitrary site of a B-site lattice in a spinel with
nearest neighbor interactions can be expressed in terms of Green’s functions for a face-centered cubic
lattice. Results of numerical calculations of the B -site lattice Green’s functions at the origin and over

the third neighboring sites are presented.

A lattice Green’s function for B-site lattice in spinel
is a quantity of particular interest in studying problems
such as the energy spectrum of impurities, defects in
a B-site magnetic spinel, or hopping conduction in mag-
netite, etc. In this paper we show that the lattice
Green’s function of a B-site lattice at an arbitrary site
with nearest neighbor interactions can be expressed in
terms of Green’s functions for face-centered cubic
{f.c.c.) lattice which are given as a linear combination
of products of the complete elliptic integrals of the first
and second kinds.!

A spinel structure has an overall cubic symmetry, A
unit cell accommodates two types of sites for cations,
namely, the tetrahedral A-site and the octahedral B-
site. The B-sites are composed of four interpenetrating
f.c.c. sublattices in such a way that each site of a sub-
lattice is surrounded by six nearest neighbor sites which
belong to three other sublattices, as illustrated in Fig.
1,

We consider the case of a B-site ferromagnet in spi-
nel with nearest neighbor isotropic exchange coupling in
the presence of the external magnetic field along the z
axis. The Hamiltonian of the system is given by

H=-J2 208, *S, ,, -gu,25S; Hy, (1)
Y Pmn In m

wherej,, is a lattice vector at the jth site of sublattice

m, p,.1is a vector joining the adjacent sites of sublat-

tices m and n, and J> 0,

We shall calculate the lattice Green’s function using
Zubarev’s technique of double-time Green’s functions, 2
as defined by

Gl ~ 1) =La0) 5 b))y = = i6(t = 1)L a(t), b(t") ), (@)

where a and b are physical operators, () means taking
a statistical average over a grand canonical ensemble,
and

G(t)z{l’ (>0
0, (<0,

In the following we shall restrict our attention to the
one-spin Green’s function at T=0°K. The w Fourier
component of the one-spin Green’s function

g’mlm' (w) = <<S;m 5 S;m'»w

- 51; f : di((s; (055 () expliw(t - 1], ®

satisfies the equation of motion,
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5§
gy o o (W)=—"8, \  +2dI(S; 2585 ,, 5870,
P T m

il

Im*0mn

=85 207 o3 ST Ml ¥ R Hogy ().

“)

At T=0°K, the system is in the ground state where all
the spins are completely aligned along the external

field, the following decoupling is valid:

((5;,”:[/ St o S10 0w =288} 58] M,
mn
and
<<Sfm2 S;,,wvmn;sim'»w:SZ (S5 0 557 D
p”m nmn

These reduce Eq. (4) to a closed form

it = 2278 - gu yHolg, \ (@) +2JS2 P ()
P mn
S

==5
7 imlm'?

®)

(6)

where Z is the number of the nearest neighbors and $

is the magnitude of spin,

Introducing the spatial Fourier transform of g,mlm.(w),

-y

e N

QO A cations
O X anions

@ B cations

FIG. 1. Spinel erystal structure.
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mim’

Gy (@ ——Zz?gm,(k,k', w)explitk -, -k’+1,9], (1)
| 3 4
we rewrite Eq. (6)

[hw —22J8 - gu, Hilg . (k, k', w)

#2085 10 0, K, )= 20 1 B ®
with
Y k) =2cosk-p_. . (9)
In matrix notation Eq. (8) can be written as
Dlk, @)l k', ) = > Toge, (10)
where
D(k, w)
o Bcosk+p,, | Beosk-p,, | Bcosk:p,,
|8 cosk - py, o Bcosk-p,, | Beosk-p,,
Beosk-p, | Beosk-«p,, a B cosk +p,,
Bcosk-p, | Bcosk-p,, | Beosk-p,, a
(11)
with
@ =fiw ~2ZJS ~ gu H,,
B=4JS, (117

and g(k,k’, w) is 2 4 X4 matrix having elements
G (K K7, w) for m, m’=1,2,3,4, and I is a unit matrix.
From (10) we get the Green’s function matrix

S
g(kaks w) :T-T'D-l (k5 w)ék,k'v

and with (8), the Green’s function

:%Z/[D‘l(k, W), explik(,, -1, ). (12)

{
gimlm‘ \w) -

The inverse of the matrix D(k, w) can be written as
(D, )], = d,. 0k, w)/ | D, w) |, (13)

where d, (k, w) is a cofactor of D_,(k,w). For spinel
structures it is necessary to determine two of the co-
factors independently since those remainings can be ob-
tained from the two cofactors by proper symmetry oper -
ations as shown by the following relations:

ok, @) =d, (K, @),

dyy (R, by by @) =dyy(l by, =R,y @) =dyy (=R, oy, R,y @)
=d(k, =k, kR, ),

d, (%, ke, R, w)=d (~,, kR, wy=dy(k,, R, k,, )
=dy(k, =k, -k, w)=dy(~k, &k, -k, w)
=d, (=, kY, k,, w). (14)

The determinant 1 D(k, w)| and the two cofactors dy,(k, w)
and d,(k, w) are calculated to be

. chk, ck, cky ck,
| Dl )= (@ =0 (£ ~cos % cos %2 - cos B cas e
—cosg—zlff cos%e—"> 5 (15a)
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d].l(k;w)——(a 6)[(¥ + OB - Bz <1 +COS—(%——-—Q

+ cosc(k”z— 2 cosc(kzz- k’)>] ) (15b)
and
dy,(k, w)=-g(a B)(acos (b, + )
c;e‘), (15¢)
with
E=[(a +8)y/8°] -1 (15d)

and ¢, the lattice constant of the spinel structure. The
two cofactors d,(k, w) and d,,(k, w) give rise to two dis~
tinct lattice Green’s functions, namely, intrasublattice
and intersublattice functions. Here we note that a site
on a B-sublattice in spinel is carried to any other site
of the same or different sublattice by a proper combina-
tion of a translation of IX +m§ +nZ and that of p;,=L(%
+%), where I +m +n is zero or an even integer, and %,
v, and Z are the primitive translation vectors for a
f,c.c. lattice with lattice constant ¢. Then, after some
calculations with (12), (13), and (14), we obtain the gen-
eral formula

g(l, m, n):'s—n%ﬁ(e—_%:z—)-{[(é—A —3)(6 - A -2)

~ 31D, m,n) =D+, m =1, )+ D(1 =1, m +1,n)
+D(,m+1,n=-1)+D(,m -1, n+1)+D(I -1, m,n+1)
+D(I+1,m,n-1l}, (16a)

for the intrasublattice Green’s function, and

1
I7JN -2 -4)
+{2e=2A-ND(IH,m+1,n)-2D(I+1,m,n-1)
—D(lym -—1,71—1)],

gl+3,m+3z,n) =~ [2(e =& =3)D(1, m, n)

(16b)

for the intersublattice Green’s function of the B-site
lattice. Here D(I,m, n) is defined by

D(Z,m,n):%fffdxdydz
(0] a a

% coslx cosmy cosnz (17)
E —cosx cosy — COSY COSZ ~ COSZ cosx’

and E, €, and A are dimensionless units given by
E=(-A-3)(e~n-1),
e=Tw/8, (18)

A=gu H/B.

For the range of values €>4+ A and e<A, D{I, m,n) and,
hence, g’s are real, while for 4 + A>¢> A, they are
complex numbers and € should be replaced by € ~is
where s is a positive infinitesimal number. Then, by
use of the relation
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FIG. 2. The values of g4+ in the complex plane.

1 1
lim ————= P——— + in5(€ —€
s=or EFIS =€, €~6 (=<,

the denominator of the integrand in (17) becomes

1
E ~is’ = cosx cOSY —COSY COSZ — COSZ cosx’

where s’>0for €~2~A>0and s’<0fore-2-~A<0,
This enables us to express D(I, m, n) in terms of the
f.c.c. lattice Green’s function G(I, m,#) and its com-
plex conjugate G(I, m,n) as follows;

D(l,m,n)=G(l,m,n) for €~2~A>0

=G(l,m,n) for e-2~-A<0, (19)

We shall explicitly evaluate the B-site lattice
Green’s functions at the origin and over the three neigh-
boring sites. From (16) and (17) we have

- 1 1
£=8(0,0,0) =5 (e_is_4_A+(€—3-A)D(0,0,0)),
€-5-A

1
=L L —
£ =802 0=55 <€—is—4 A

~(e-3-2)
><(€—2—A)D(0,0,0)>,
87601, 5 D = g (3 -1 = 8)(e -8 - 8)(e =5 =)

+21D(0,0,0) + 4{2D(2,0,0) - D(2, 2, 0)]

(e—3—A)(6—5—A)> 1
- 3 €-is~4-A’

and
g3Eg(1,1,0)=§;t1]T[<§(e =1 -A)e-2-A)e~3 -A)

1 1
+4(€—is -4 $>D(0’0’0)_4(e—is-4 —A)

x[2D(2,0,0) -~ D2, 2,0)] _5-‘—2—-‘—‘\‘] . (20)

3
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We note that for evaluating the above four g’s for — <
€< =, we need to calculate the three f.c.c. lattice
Green’s functions G(0,0,0), G(2,0,0), and G(2,2,0) for
the range of —1 < E< =, For the case of E> 3, these
f.c.c. Green’s function can be evaluated from Eqgs.
(3.182a), (3.18b), (3.11), and (3.16) in Ref. 1 as a func-
tion of the complete elliptic integrals of the first and
second kinds, K(k,)and E(k,) with the real moduli k,.
For practical calculations of G’ s inside the energy band,
3>E> -1, it is convenient to use the expressions of
K(k,) and E(k,) transformed for E < -1 (See Ref, 1),
leading to

6(0,0,0) ==y g K(a)K(a),

¢@,0,0)= 721+ E)(1 - a4ﬁ)(1 —ada,a.
+E(q,)E(q.) - K(q,)E(q.) - K(q.)E(q,)},

and

G(2,2,0)=(-%E?+3E +1)G(0,0,0) +26(2,0,0) - (1 + E)

[%(q.)K(q.)

N ﬂlnj E) (;la_ K(q,)K(q.) +2a,a.E(q,)E(q.)

+

e 2
- K(a)B(e) - 3 K(q_)E(q;()) , (21)
where
1 (1-E)(-1-E)}/*(3-E}'"
(l*=ém(1+ (—1—E)2
4(- E}/2(=1 - E)/2\1/2
FTTF1-Br ) ,
and
g,=2l(~ B} /23 (=1 —E)/2)/[1 = E+ (3 = E)/3(=1 — EY-/2).
(217)

In (21') the square root should be defined by
(x =EY/2=(x —E)'/?

=i(E -x)*/? for x —=E <0,

forx-E=0

Now we shall apply the procedure of analytical continu-
ation® to K(q,) and E(q,), both of which are multivalued
functions of complex variables g, with branch lines join-
ing +1 and + %, and ~1 and - « along the real axis.
Let’ s specify K(q,) and E(q,), the principal Riemann
branches on the first sheet, and use superscript II to
refer to branches on the next sheet connected from re-
gion Re ¢, >0, Im ¢, <0 on the first sheet to region

Re q,>0, Im g, > 0 across the branch cut between +1
and + <, The branches II of K''P(q,) and E‘™"(q,) can be
expressed in terms of the principal branches,

K(q,)=K(q,) - 2iK'(q,)

and

E™(q,)=E(q,) - 2i[K"(q,) - E"(q,)]. (22)

For the special case of 0= E> ~1, it is possible to
transform K(q,) and E(q,) with complex moduli ¢, into
functions with real moduli as shown below. We first
perform the transformation of K(q,) and E(q,) in the an-
alytic region, E < -1, according to
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FIG. 3. The values of g;_ in the complex plane.

K(q,) =——K(a, ),

1+gq,
and
E(q) =31 +q)E(g,,) + (1 - ¢)K(g )], (23)
where
%, Ezi%=2[z +(=Ey*(1 - B)F (1+E)(3 - E)*/*] 12,

(231

The values of q;, for — =< E <« are sketched in Figs. 2

\,
Ny
e
—

-1.0r '. /' 4
-1 o
-20 -0 o L0 20 30 40 50 60

FIG. 4. The real parts of Green’s function for B-site lattice in
spinel. Equations (20), g,, &, & 2and g; are multiplied by
81JN.
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€

FIG. 5. The imaginary parts of Green’s function for B-site
lattice in spinel. Equations (20) are multiplied by 8xJN.

and 3. When the value of modulus is greater than unity
we can use the transformation

=) )
and
tr=n F{2) () 22 (2]

(24)

where the upper sign refers to the case Im (l/ql*)z >0
and the lower signs to Im (1/%,)2 < 0. Equations (22),
(23), and (24) lead to the following expressions for K(q,)
and E(q,) in terms of K(1/¢,,) and E(1/q,,) with real
moduli 1/¢,,:

_1+ilg,’l (i)_. ,(1 ]
K(qt)_' 2q+ [K q1+ ZK q1+ ’
St k(o) - (7))
Klg)=——2"K{—=) —i3K'[—
(q.) %4 .~ i )l
T Y. _1_ iE! _1)]
E(q*)_1+ilqh'l[E(qu)+l (qh

i 1 1
2]
D he d1+ qe
and

q1+
e [5() + o2 ()
E(q)=—"|E(—) +i3E/(—
(a-) 1—ilql-’l[ (ql- ’ -

i 1 1)]
-—|]q-"|K(—=) +3K"(—
q]_-[l - l (‘h-) - (‘h— ’
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with

G =V1l= al* (25)

For 3> E >0 and applying analytical continuation
using (22), K(q,) and E(q,) are directly computed by ex-
tending the method of arithmetic-geometric mean from
real to complex variables.,

The results of numerical calculations of the four
Green’s functions of B-site lattice Eq. (20) for A= 0
are plotted in Figs. 4 and 5 where the Green’s functions

115 J. Math. Phys., Vol. 18, No. 1, January 1975

are multiplied by a factor 8gJN. The imaginary part of
£(0, 0, 0) corresponds to the density of states which con-
sist of one acoustic branch for 0 <€<2 and three optical
branches for 2 <€ <4, Two of the optical branches have
a §-function -type spectrum at €¢=4 for the present
system,

IM. Inoue, J. Math, Phys. 15, 704 (1974).
D, N. Zubarev, Sov. Phys, Usp. 3, 320 (1960).
3T. Morita and T. Horiguchi, J. Math. Phys. 12, 986 (1970).
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Fields and radiation due to a charge incident on a

conducting plane
Neal J. Maresca and Richard L. Liboff

Department of Physics, School of Electrical Engineering and School of Applied and Engineering Physics, Cornell
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The exact fields of a uniformly moving charged particle which passes through a point hole at 1 = 0
in a grounded, infinitely conducting plane are obtained. Calculation of the fields for all time

(— o <€t < + o) reveals a singular spherical pulse emanating from the origin at + = 0 which
destroys fields within its sphere in the left half-space, and generates them within its sphere in the
right half-space. Further calculation exposes a reversible exchange of reactive field energy between
the left and right half-spaces, together with a dissipative radiation loss. A review of techniques which
employ the integral fE ¢ jd V' to obtain radiation energy is given. For the problem at hand

(— o <t < 4+ o) itis found that this integral represents radiation alone while in the restricted
problem (—« < ¢ < 0), the integral contributes both reactive and radiative (resistive) energy with

reactive gain exceeding radiative loss by the factor 8%

i. INTRODUCTION AND SUMMARY OF RESULTS

When a uniformly moving charged particle makes a
transition between two media of different optical proper-
ties, it radiates. This transition radiation was first in-
vestigated by Frank and Ginzburg,! and subsequently by
Garibyan,? and others. It has been pointed out by Ott
and Shmoys,3 however, that most of the analysis is
directed towards the evaluation of radiation profiles,
intensity and polarization, whereas little attention is
given to the explicit nature of the fields. In this paper,
the exact relativistic fields of a uniformly moving
charged particle normally incident on an infinitely con-
ducting plane are obtained.

The analysis consists of a straightforward solution
of Maxwell's equations. The magnetic field is first re-
solved into time derivatives of its Cartesian compo-
nents, which are then expressed as Fourier integrals.
Evaluation of the Fourier coefficients reduces the prob
lem to one of integration, and subsequent deformations
of the integration contour in the w plane yield the solu-
tion in all regions of space and time.

The fields are found to be simple in form, although
highly singular at the reflected and transmitted wave-
fronts. Before impact, and in various regions after im-
pact, the solution conforms to that of an image picture
from which the causal nature of the fields is clearly
evident. Inspection of either the starting equations or
the final solution reveals an interesting “symmetry”
to the problem, namely, the field (either electric or
magnetic) on any z plane added to the field on the mirror
— z plane equals the sum of the actual and image fields
on the original z plane.

Knowledge of the explicit fields allows calculation of
both the spectral and angular distributions of radiation.
The resulting expressions are in agreement with those
originally obtained by Frank and Ginzburg.! The total
transition radiation energy, however, is found to diverge.
This is a consequence of the apparent infinite accelera-
tions accompanying the instantaneous annihilation of the
actual-image charge pair at the origin (z,¢) = 0,as seen
by an observer in the left half-space. In like manner an
observer in the right half-space detects a singular pulse
owing to the instantaneous creation of a charge pair at
(2,f) = 0. In an attempt to remove these singularities,
we cast the total radiated energy into a form amenable
to approximation by computing the total work done by
the particle. This provides an expression for the distri-
bution of radiation with respect to transverse wave-
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number. Following Liboff,4 an approximate cutoff is
introduced into the divergent integral by placing a hole
in the plane, and the resulting expression for the finite
radiation energy is found to agree with that of Dnestro-
vskii and KostomorovS in the ultrarelativistic limit,

The expressions for the spectral and wavenumber dis-
tributions of radiation are confirmed by a calculation of
the irreversible work done by the particle while in the
left half-space. Such a method® relies on a decomposi-
tion of the electric field into advanced and retarded
parts, and an identification of the “resistive” (radiative)
and “reactive” (inertial) contributions to the work.

An interesting effect is seen in the restricted (— 0 =
¢t = 0) problem. Namely, it is found that energy gained
by the particle from stored field energy exceeds energy
lost to radiation by the factor g2,

As formulated, the problem considers the charge as
approaching, striking and passing through the plane. It
can be shown, however, that the solution includes the
following as special cases: a charge approaching and
stopping at an infinitely conducting plane;a charge
starting from and leaving such a plane; and the Brems-
strahlung problems of pair annihilation and pair crea-
tion. The only restriction is that in all cases the
charges move with constant velocity.,

1. ANALYSIS
A. The problem

Let a point charge + ¢ move with constant velocity v
from (z,#) = — @ to (2,4) = + « striking an infinitely
conducting plane at (z,#) = 0. The problem is illustrated
in Fig. 1.

$
J

L

FIG. 1. Experimental configuration, < 0.
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The fields are given by Maxwell's equations?

VXE(r,t) = —p iﬂ(r’_f),
dat
VXH(r, ) = aEa” +i(r, 1),

where j = kev8(z — v£)5(x) 5(y). We take the values of
the parameters p and € to be those of free space in
order not to complicate the analysis with the presence
of Cerenkov radiation. The consideration of more
general expressions for these parameters is reserved
for a future analysis.

Inasmuch as the current is confined to the z direction,
the magnetic field will be totally azimuthal and may be
resolved into its x and y components as follows:

H(r, ) :; (F(r, )i+ G, 1)7).

Written in this form, the functions F and G are found to
satisfy the equations

i<_ T2 + CL 33) F(r,t) = + eé(x)ts(t—i)ﬁl— 6(y),

ot 2 g2 v/ dy (1a)
3 1 82 Z d
a<_ 72 +_c~2 57) (r,f) =— e6(y)6<t-—;)a é(x))(lb)

where ¢ is the velocity of light in vacuum. We concen-
trate on obtaining F(r, f).

Introducing a triple Fourier integral in the form

1
F(r,t) =
’ (2m)3
reduces Eq. (1a) to an ordinary differential equation for
the Fourier coefficient F,

2
<£——+a2> F(ntz,w) = s exp(z'i w),
dz2 w v
2/c2) — (02 + £2).
The solution is easily found to be

_ eg expli(z/v)w ]

a2— (w2/v?)

The solution is the sum of the particular and homo-
geneous solutions, represented by the first and second
terms, respectively. The unknown homogeneous coeffi-
cient A is determined by requiring the tangential elec-
tric field to vanish at z = 0, appropriate to an infinitely
conducting plane. In terms of F this condition becomes
dF/dz = 0 at z = 0 which yields

(2) €8 !

A(n.{w) = Sgn(z m .

f_oo eiCnxrwy-wt) Pingz, w)dndidw, (2)

where a2 = (w

Fngz, w) Angw)etelz!.

t-iyve

FIG. 2. The w plane and integration contour C.
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The Fourier coefficient F is now determined, and may be
substituted into the Fourier integral given by (2) to
obtain

H,(r,t)

L 2 g ef OC/O] Ligesy-un gnazdw

T @B 8t T w 22— (w2/v?)
_sqn(z) 3 fwo et eialzl
@2m3 ot - v afa?— (w2/v?)]
x eilnx+ey-wt) dndtdw. (3)

The first term of this expression is easily evaluated
{Appendix 1) and found to be the x component of the mag-
netic field of a charge ¢ moving with constant velocity v
in free space. This field is denoted by HZ(r, ), and given
by

_e . © T
He(xr,t) = o yv sing fo J1(’<p) Ke TRV ZTutl e
=L yv sing £ ,
am [02 + y2(z — vt)2]3/2

where we have introduced the polar coordinates 32/ ¢os%.
This “actual” field, so denoted since it is associated
with the moving charge, is to be distinguished from the
“image”’ field associated with the moving image at

z =— vt,and given by H:(p, z,) = H*(p,— 2,t). We
also introduce the “previous” fields

(] a
pr(r,t) = {gx +tHy, 2<0

z2>0
which, as will be shown below, are the fields seen by an
observer at (r, ¢} previous to { = /c, where 7 is the dis-
tance from the point of impact.

Equation (3) may now be written as

a +00 _§ ei(n’“éy*alzl—wt)
H(r,f) = H(r, f) — 582&) ezt alai-vt)
* = (2m)3 8¢ f‘ v afe— (w2/v2)]

X dndtdw. (4)

We denote by a’ the real part of @,and by a” the imagi-
nary part. In order to prevent the magnetic field from
diverging as |z | & «, we require a” > 0 everywhere on
the integration path. Also, to insure left-moving waves
for z < 0 and right-moving waves for z > 0 (the radiation
condition) we further require o’ < 0 for w < 0,and

a’> 0 for w > 0. These conditions on ¢’ and a” specify
the integration path in the w plane. Introducing the co-
ordinates and integration variables

X =pcosp, 7N =K cose’,

y = p sing, § = Kk sing’,
(4) becomes

H (r,f) = H2 — sgn(z)

( ) — vy?2) sin(bi— f: J,(kp)x?

N f eifalzi-wt)
C afw? + (yuk)2]
where @ = [{w2/¢2) — k]1/2,

Fig. 2 shows the placement of the poles, the branch cut,
and the integration contour C in the w plane.

dwdk  (5)

B. Contour deformations

The solution to the problem now lies in the evaluation
of the integral expression contained in (5). In this sec-
tion we eliminate the w integration by deforming the
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contour into the upper and lower planes. We note that
as w > 0,

eilalzi-wt) 5 giwlizl/c)~2]

Thus the convergence of the w integration depends on
lz] % ct.

For |z | > ct,the integration converges at infinity in
the upper half plane and we may lift the contour to
w” = + ©,as shown in Fig. 3. The only contribution is
that due to the pole at w = + # vk, and is found to be

H (r,t) = H? — sgn(z) (Z e) yv sin¢ fow Jy{kp)kerela-vd gy
7

z2<0

z2>0
= Hi(r,1), | z| > ot.

Although the « integration converges for |z |> v¢, this
does not contradict the initial | z |{> ¢f requirement, but
replaces it. It must be kept in mind that (5) contains a
double integration and therefore any restrictions for
convergence on the w integration will be altered, in the
final result, by the presence of the « integration. In this
case we find that whereas the w integration converges
f{or' |z | > ct, the entire double integration is valid for
2> vt

For | z | < ct,the w integral converges in the lower
half place. Before deforming the contour, however, we
first apply the Fourier convolution theorem to obtain

o

® afw? + (yuk)2]

i(alzli-wt) L
¢ dw = f_w Sflwglt — u)du,

where
1 400 ei(alzl-wu)
flu) = — T dw
V2r f-w @ '
1 +00 e"iwu
) == —_—
80 == L om0

This is convenient since f(#) now contains no poles, and
g(u) no branches, The integral g(t — ) is easily found
to be

g(t__ u) = __];_ ‘)71-/2 e Y vk Te-ul .
YUK

For f{u),the contour may be deformed into the lower

plane provided u > |z | /¢. This encircles the branch

cut,as shown in Fig. 4, and the entire integral is found
to be a representation of a zero-order Bessel function,3

flu) = — (2mic/V2m) JolkeVu2 — (1z212/¢2)]), u>lzl/c.

Collecting results for |z| < ct and substitution into (5),
after the change of variable u’ = u/c, yields

. . o o0
H (r,t) = H? — sgn(z) (—4~"e) v sing 57 fo Jq(kp)
x (flzf[ TolkNu'2 — [2]2) eyorle-w/edl gy
+ fc": Jok Vw2 — |z [2) e rvrle-w/e)] qu’) dk

= H? — sgn(z)

47 (6)

where this last equation defines the integrals /{}, and
L.

ct
|

To evaluate the integrals occurring in the integrand
of (6), we will expand the integrands, perform the indi-

C. Evaluation of / andl:t
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i) y smd)—a—t— fo J(kp) k(I + IF)dk,

qp +iyvi

—-——-———MM—O———-—————’ w’!
-CK +CK

¢ -iyvk

FIG. 3. Deformation of the integration contour into the upper half
plane for |z [> ¢t

cated integrations, then resum. For this purpose we
make use of the addition theorem for Bessel functions?

~ [ Z—zeri\W2 'R .
10 =(F22)" 2, L@ e,
where @ = (22 + 22 — 2Zz cos¢$)1/2,
Thus, '

Jolkvuw2 — |2]2) =2 25 (= 1) Iy, (ix |21)J 5, (ku),

where the prime on the summation weights the n = 0
term with a factor . By further introducing the repre-
sentation

Jn(z) = -2;.. f.;n ei(z coseme)dg’
T
we find
“yukt
Ict = €
tzl o

"
2 D Jylixlzl) [17 asezine [°F
n=0 -

x ewlix cose+yBK) gy’

w _ e'YK! 2 ; o 2in® «©
IS = " 2 n?() Jzn(“‘lzl)f_,, dp e2in fct

X e#' ik cos6-yBK) ;y’,

The u’ integrations are elementary, producing factors
gilzlkcos® gnd gictx cosé which we expand in the form
+00 o’
eizcosd = 33 imJ (z)emb =2 2, imJ (z)cosmb.
m=-oo m=0

AKw”

-CK +CK

FIG. 4. Deformation of the integration contour of f(ux) into the lower
half plane for u > |z|/c. The integrand of f(u) contains no poles.
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The remaining 6 integrations are performed by first
writing
cosA cos B = 3[cos(A + B) + cos(A — B)]
and noting 9 that
I cosnd o T <m — )n’

0 1+ acosd

1—a a

a2<1, n>-—1

This last step removes all integrations and yields
s = 2n-1

Ifh == 5 ( O )
YK

n=0

o’ oo’

¢ F pa-pims e D - e

m=2n
X [Jm(KCt) — eyx(lzlg- vt)Jm(KiZ|)]J2”(iK|z|)’
2 °°, 2n-1"
IS == 2 Uy~ ( > [ —p)Jrem
YK =0 m=

’

SRRt el P PR b

m=2n

bt — )
x I, (ket)dy, ik i 21).

Comparison of these two expressions indicates that ex-
cept for the second term in the brackets occurring in
I¢f, the sum I} + IT, will contain only even terms in
m due to the placement of the (— 1) factors. Thus with
= y2(1 — )2 the sum becomes
I

:__?_ eyx(lziB~vt) E (— 1)»

YK n=0

2n-1’
x (E (— D7yl — e
m=0

’ ,

¢ 5 pa—ppre s T - )

x Jo (iklzl)d,, (kef) + ;‘}; OZ;

n-1’
<2 grom + Z} gmon 4 2 cmm) Jzn(w[z[ o (KCE)

m=0
= Z;l + 229

where 25, consists of the first three terms,and 25, of
the second three. It is not difficult to evaluate 2,
(Appendix 2) and we find its contribution to the field is
given by

z2<0

z>0

o
H, (due to 23,) = g

x?

Iz < ot.

We recall from Sec. B above that these same fields were
found for |z | > vf. We see, then, that they exist every-
where in space.

To simplify 2 ,,we rewrite it as follows:

’

0o’ n-1’ oo’
Doy = i/{ 2o (— 1)n< o trm o 33 Epmeon 4 3 §m+n>
Y n=0 m=0 m=n m=0

X Jz,l(ix |z|)J2m(Kct)

= % aE.o g Z (= D [pgepi{KCt) + Ty 00, (ket)] Iy (i ] 2])
- % o;i;o ¢ Z_Z.Z,o (= 1) Ty g, Ket) dy, (i [ 21).
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The [ summation in this last expression can be com-

puted exactly with the help of a modified form of the

Bessel function addition theorem,® and we obtain
Tp= 2 B e+ re)d,, kiTE= 1T9),

YK a=0

where A = (v +12])/(r—z|), 7=ct, L =921~ B)2,

and the sum converges for |z | < 7.

Collecting all results, including those of Section B
above, we find that the magnetic field in all regions of
space and time is given by
2) & ee

2n

H. (r,t) = H? — sgn( sing _a_

i “t ) [° 7 (Kp) J, (KNTE = T2 T2)dx

EHﬁ sgn(z)( e)c sinp A, (7
2n

D. Reduction of A

In this section we calculate the contribution to the
field due to A as defined in (7),

'

A=l E ga(re — - “)f J1(kp)J 5 o (k72 — | 2] 2) dk.

9T a=0
The integral occurring in this expression is known and
given by9.10

f: T1(Kp) T o o 1ok VT2 — [2{ 2} dk

— P pao ( _.___ZEE___)
Pyl 1 , r<ect,
2—{z]2 ¢ T2 — |2|2
= (”‘21)&, r =ct,
p
0, r > ct,

where P{1.0)(x) are the Jacobi polynomials!© generated
as follows:

2 > g2
—s = 29PQ.0)(x), R'=v1— 2xz + 22
R(I—z+R) ad = ° 2l <1

The conditions 7 E 7 have been written in place of the

conditions P Z v72 — | z |2, and the solution separates
into three cases.

1. Case 1: r>ct
Here we see that A = 0, and consequently by (7)
H,(r,t) = Hi(x, 1),

so that for this, the simplest of the three cases, fields
reduce to the previous fields, H2.

2 Case 2:r<ct
In this case we must evaluate

<9 P 5 (zr)wlp(l,o)(]___ﬁz__)]
ar{r2 — |212 a0 * 12— |22

+ same with 2’ = 2”
where 2’ = ¢ =2(1 — B2(1 + |z|/7— |2z]|) and 2" = Ca7L.

The sums are evaluated with the help of the generating
formula, and after some algebra we find

H,(r, 1) H"-}-{\‘H‘H—H’i” 2<0,
r,t) = \
x * +H: +H, z>0,
0, z2<0,
T+ H, z>o0.
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The results for the cases » = ct are depicted in Fig. 5,
For ¢ < 0, the image picture dominates as a z < 0 obser-
ver sees the fields H, = H? + H!, whereasa z > 0 obser-
ver, being shielded from the left by an infinitely conduct-
ing plane, sees no fields. For { > 0,a hemispherical
pulse propagating at the speed of light destroys all
fields behind it for z < 0, and only after a time ¢ = 7/¢
is a z < 0 observer aware that the image picture is no
longer valid. Similarly,a z > 0 observer must await the
information that a charge has passed into his space,
after which he finds the image picture in force. It is
interesting to consider the charge as having effected a
hole in the plane through which the fields in the left
space leak symmetrically into the right space.

3 Case3:r=ct
In this case the following relations will prove useful8:

(i) Ja-1<x>=§ I (%) + I (x),
(ii)
(iii) f0°°

f:’ Jy (kp) Iy (kT2 — | 212) kdk :% 8(p —Vr2—|z[2),

24
J(Kp)T 5 oy (KVT2 — | 212) kel :l E (—1)ta

X 41 foo (xp) JZZ(K\/TZ— !2[ )d
+ 12 5o~ TE T T2).
f

Relation (iii) is obtained by repeated application of the
recurrence relations for Bessel functions.

We now carry out the time derivative operation in A
and employ (i)-above to obtain

20zl 2 = Y

A= 7 ate(ve =) [T g (kp)d,, (kY
2 |z )2 0

u=0
+ ;0 a(ao + ) ‘[000 Jl(Kp)J“_l(K\/_“)‘i;_z di

~~-—27—~2 27 ate(i e +a9) f0°° Jy(kp) Iy, (k¥ ) dx
12— |212 o0
=A+ Ay T AL (8)

In A,, we separate the @ = 0,1 terms explicitly and make
use of relations (ii) and (iii) to obtain

2 e
- Ay, =08(p—Vrz—1212)
T
x<~1+2§(x+x +Z) “*1A“*1+A°‘1)>
el O
+ D5 rarl(yutl 4 yatl) 2 (— )b«
a=1 =1
x 41 _[000 Jl(xp)JZZ(K\/m)dK
1 B sin2g

= - - = = § ‘\/2*' JE
2 1 — B2 cosZp (e ! 121%)

+ 4 Z‘ goar2(yatl 4 y~al) E (— el +1)
a=0

X fo Jq Kp)JZl,z(K\/ YdxK,

where we have summed all terms involving the §-function,

made the substitutions |z | =7 cosg, p =7 sind, » =7,
and slightly rearranged the summation on the remaining

> Z

FIG. 5.
Unshaded regions have zero field.

The solution for { > 0. Shaded regions represent H=He + H.

8(p — V12 — |2]2) = 6(r sind — V72 — »2 cosZ2p)
8r — 7)
lr/~ V12 —r2 cos24g]|__,

= sinf6(r — 1)

Returning these results to (8) and eliminating the vanish-
ing @ = 0 terms in A, and A,, yields

__1 B sind oy — ci)
2 1-p2cos29 r
2lz) 3 1y -a- ) [
+;2—fl—z—'—2 aZ:)o(aﬂ)ca T(amaml_ )« 1)f Jl(Kp)szz(Kp)dK
47 E par2(yma-l 4 yatl) E (— 1)ta
72 - 1212 o0 =0
2T

(7+1) fooo J1(kp)J 5,4 5(Kp) dk R

[t o]
X 27 (@ + 1) arl{y-al + patl) fo I (KP) T g sz (kD) dK.
a=0

From above, each integral is known and we find, aside
from the §-function,

1
A= ——m— — A)yetl +1
NE— H(IZI CD R B TATEYER
—(lzl+7) 2 enel@+ 1) + 7 25 (—De
a=0 a=0

X [(En)*2 + (£/x)a*2] (@ + 1)(a + z)).

These sums are easily evaluated, and writing |z|=7 cosé,
p = r sind, v = 7 yields, for the magnetic field at » = ct,

. 1 (—e) vsing 1
— HP __. P W e bt IS S
H_ (r,{) = HY — sgn(2) Sm(p[ Y 4 e ((1 P
1 \N_ &9, siné é(rmct)}
(1—p8 cos())3> 4n 1 — 32 cos26 ¥

= H! — sgn(z) (— L (He + HE) + ev sing
2 27
sinf 6(r — ct))
1 — 82 cos2g r )

The calculation for H, is similar to that for #, and the
total field is found to be given by

integral expression. We note that H(r,t) = ¢ H(r, 1),
—— — e e where
ﬁHa + Hi, z < 0, ‘1 (He + Hi) _ev siné o(v — ct) <0
Hr, bt = - r > cl, 21 1 -— B2 cos28 y ’
)0, z >-0, _ ¥ = ct. (9)
_ {0, z< 0, y < ot ’l(H“+Hi)+-e—v sing G(V—Cl), 2 >0,
VHe + Hi, 2z >0, .2 27 1 — B2 cos26 r
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Inspection of the solution reveals the interesting “sym-
metry”

H(p,z,t) + H(p,— z,t) = He(r, ) + Hi(x, )

which is also apparent from (4). It is noted that this
symmetric sum (inz) does not include the singular
radiation pulse. A similar condition also holds for the
electiric field (replacing H by D), associated with (9),
which we now compute in two ways.

First, we recall that the field H¢ is due to a charge
+ ¢ in vacuum moving uniformly from z = —  to
z = + o, and that H? is identical to H¢ except that both
the charge and direction of motion are reversed. These
fields, then, can also be found by appropriate Lorentz
transformations on the Coulomb fields of charges at
rest in vacuum;* a technique by which we easily find
the electric fields associated with H% + Ht to be

D=2 o — 1 - 1
P 4g [p2 + ,),2(2 — vt)2]3/'2 [pz + .’,2(2 4+ 05)2]3/2
D = e y z— vt _ z + vt
2 4q [pz + 92(z — vt)2]3/2 [p2 +y2(z + Ut)2]3/2>
= D¢ + Di.

Second, the electric radiation fields are obtained
directly from Maxwell's equations using the known mag-
netic radiation fields, and are given by

D = eB _sinf cosd  6(r — ct) sgnlz),
P 27 1— B2 cos2g
in2 _
D,=— eB sin2¢ &5(r — ct) sen(z).
27 1 — B2 cos?s ¥

The radiation fields, therefore,are found to be

H(r, 0 = é ev sind 5(r — cb) sgn(z)
27 1 — B2 cos29 r (10)

D(r,?) = (p cosd — k sing) & sing 8(r — ct)
27 1 — Bz cos2g r

i1l. TRANSITION ENERGY

The fields given by (10) are seen to be normal to each
other and to the direction of propagation, The electric
radiation field is linearly polarized and lies in the plane
determined by the ray and the particle trajectory. Such
linear polarization is characteristic of transition radia-
tion. The results obtained above agree with the asymp-
totic fields previously reported by Garibyan,? who con-
siders a charge incident on a dielectric half-space. The
nature of the transition radiation may be investigated in
one of three ways due to Poynting's theorem,11

. = — 3e — l. i 2 2
_6A S+dA [ i-Eav Y [ (B2 + B2)av, (11)
which expresses the power radiated in terms of the rate
at which the current does work and the rate of storage
of electromagnetic energy: One may integrate the lhs
of (11) for all time to obtain expressions for both the
angular and spectral distributions of radiation [method
(a)]. The integration of the rhs [method (b)] provides
the wavenumber distribution of radiated energy. Finally,
one may compute the irreversible work done by the
charge on the fields in the left half- space, due to the
presence of the plane [method (c}]; a technique employed

2 J. Math. Phys,, Vol. 16, No. 1, January 1975

sgn(z).

by Schwinger® in obtaining the radiation from an elec-
tron in arbitrary motion. In the following all three tech-
niques are employed to examine the radiation due to the
impact of the particle on the plane.

(a) From the lhs of (11) the energy radiated into the
solid angle d? = sindd6d¢ is
d§ . . 72 o
—Z=v2 ["°(§e7)at=— [ [H, O2dt,  {(12)
as e ceEg 7™
where S is the Poynting vector associated with the
radiation fields (10),
S=ExH=-" |H(r,0l2.

ceg
To obtain the spectral distribution of radiation, we in~
troduce the Fourier representation

Hr,w)= ['7

. ~ ef3 siné eiwlr/c)
ewtHir, ) dt = ¢ ——
(x, ) ¢211 1—p2cos?g 7

’

allowing (12) to be written in the form

a8, r2 1 ef\2
Rl H(r 2= —— () 2
dQdw  2mceg mceq \2n/ (1 — B2 cos?p)?
(13)
In the ultrarelativistic case, this radiation profile is
strongly peaked in the directions 8 ~ mc2/E ~ y~1 and
6 ~ 7 — 371, In the nonrelativistic case the pattern is
equivalent to that due to the sudden creation of a dipole
at z = 0. Performing the dQ integration in (13) over 27
solid angle yields the total energy radiated per unit
frequency into the left half-space

dg, 1 <e6>2<1 1+ p2

dw cepl2r/ \2 g3

sin26

In {14)

1+3 1 >
1+ p2/’
This is in agreement with the formula of Frank and
Ginzburg,t

(b) We now integrate the rhs of (11) from { = — © to
t =+ o, The (E2 + B2) term vanishes, as its value at
+ ¢t and — { is the same, and we find

& =—['" j-Edvat. (15)

Since the charge does work only against the field due to
the plane, we write (3) in the form

Hx :Hx(l) + ngz)’

where H{1) represents the field of a free charge, and
H(f) arises from the presence of the plane. Thus,

H2 =&
ot
and by Maxwell's equations we find the z component of
the associated electric field to be

E® =2 g2 2 g

ox dy
ie fwo (7]2 + gz)
(2m3 = vala? — (w2/v2)]

X etalal gitnx+ ty=wtd dedndw, (18)

{iF@ + jc @)

= sgn(z)

With this result and j = evd{z — vt) 6(x) 6(y), Eq. (15)
becomes

ie? (oo (12 +£2)

y_(Zn)3eo "% ofa? — (w2/v2)]

x (f_(:o etaz dz — fow erioz dz) 6(z — vi).

dédndw f_:: dte-rwt
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Introducing the change of variable
X'=z—¢& 2z2=y +x,
§ =, am

yvi=ztE 2=y —x,

which carries a Jacobian | J | = 3, we find

22 pew (21 E7) W

6 =25 = didndw.
4 (2m)3¢, '/‘“0 (o202 — 02)2 « s

Changing to polar coordinates and carrying out the w

integration with w = «c¢ sinf yields, upon disregarding
imaginary quantities,

ds, e2

= 2, 18
dr  4meg v (18)

This represents the energy radiated per unit transverse
wavenumber into both the left and right half-spaces.
The total energy, however, is seen to diverge;a result
also apparent from (14). This divergence is generated
by the passage of the charge through a hole of zero
radius, causing an apparent infinite deceleration when
the charge meets its image (to a z < 0 observer). Such
an acceleration will produce a singular pulse,as is evi-
dent in the radiation fields of (10). In an attempt to
render the radiated energy finite, we approximate the
total transition energy in the case that the charge
passes through a small hole of radius 7, in the plane
by cutting off the integration in (18) at 1/7,. Thus,

1/ 2
g2 [ e B2 (19)
4n6 4neoro

8 e

¥

If E is the kinetic energy of the charge then in the
ultrarelativistic case the radiation loss becomes
>2 ;
8 = _es _ L
dregry Higc?

in agreement with Dnestrovskii and Kostomarov.3
Using (19) we may also establish the relative decrease
in particle energy upon transition to be

E’ 1 v, B 2

E 7’0 Y 1’
where £’ is the final kinetic energy of the particle, »,
the classical electron radius,and E = (y — 1) myc? the
initial particle energy.

(c) Finally, we calculate the work done &, by the charge
while in the left half-space. This requires an integration
of (11) from t =— 0 to [ =0,

Ep =— fi dt [ j-Eav. (20)

However, the (E2 + BZ2) term of (11) no longer vanishes
as in (b), and (20) must contain contributions from both
radiation and stored (reactive) energy. To separate
these effects we follow Schwinger® and write the time
dependence of (16) in the form

elwt = Lemiot 4 privt) + L (eTivt — privt) (21)

thereby effecting a decomposition of E{2) into the sum
and difference of retarded and advanced fields. The
first “reactive” term of (21) causes the power to change
sign under time reversal, and is, therefore, to be asso~
ciated with stored field energy. The second ‘“resistive”
term gives the radiated power, and we find

ro2 0 +o0 (n? + &2)
8 = [ gze(z— oty f° ar [T0 =TT
= Ganpieg ) fott I ™ e
. etwt . pliwt .
X e iwz «—————2—-——~—— tlé(ll]du) .
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Employing the change of variable (17), we have

CZZ)L w2 £l

6 =V 2@ sand 22

g (27)360 e (afeZ2— w2)2 o hae (22)
from which there results
s, 1 <0B> r"/2 sin3¢d¢ 1 <eﬁ>2
dw ceqy \2m Y0 (1 — 2 cos2t)2 cey 27

+ 2 +
X (l l——ﬁ‘— mitf L) (23a)
2 p3 1—p3 g2

s, ev\2 K3 wdw e? .
M:< ) oo = yp2. (23b)
dx 21/ €5 o alaZe?— w22 8ue¢

Relations (23a) and (23b), which represent the energy
radiated into the left half-space, are obtained from (22)
after the respective substitutions k¥ = w/c sin{ and

w = ck sin, and the retention of only real quantities.

It is not difficult to show that the energy radiated into
each half-space is the same so that (23) is seen to agree
with the results of (a) and (b) above. In a similar way,
the stored energy is found to be

dé, e\ 2 o3 L, dw e?
4o < ) [ - y. (24)
dK 27 € T (@Zv2 — w?2)2 8meg

The fact that this is negative indicates that the energy
stored in E(2), B(2) is being removed by the charge. A
calculation for (z,{) > 0 shows that this term changes
sign, whereas the radiation term does not. Thus, the
radiation energy is irretrievably lost while the energy
stored in E(2) B(2) is reversibly transferred to the
charge (see Fig. 5). The transfer of energy involved in
this process is analogous to that which occurs in an
initially charge LRC circuit which is closed for one
cycle during which the stored energy in C is transferred
to the stored energy in L and dissipated in R, In the
limit that R/7.C -» 0, with  small but finite, complete
energy transfer requires an infinite interval.

The total work done by the charge while in the left
half-space is then
dé,  dS dé, ¢ 1
“LIZ’_r/fl_a_zw — (25)
dK dK dr 8re, v

This result is easily confirmed by using in (20) the ex-
plicit form of E§2) which, for (z,¢) < 0, is given by

lz + ot

E(2) =
£ 47r£0 [p2 +y2(z + w1)2]3/2
=~ f Jolkp)ker<le it
4re, 0
Thus,
.0 L (2) ___ ez 1 g»
&y 15 a [P av Bocy S, ax (26)

agreeing with (25). Expression (26) has also been found
by Liboff,4 who considers the work done by a charge
moving along the axis of a semi-infinite cylindrical
cavity, then taking the limit as the radius passes to in-
finity. We note that this expression includes both radia-
tion and stored energy.

In conclusion, we note that expression (19) is subject
to experimental investigation. This result represents
the total energy lost to radiation by a charge of arbi-
trary velocity passing through a hole of radius r in a
plate. As shown above, this loss leads to a fractional
decrease in particle energy (E’/ E) upon transition,
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where 7, is the classical electron radius. One also
notes in this regard that to obtain this radiation loss it
is necessary to follow the particle along its entire tra-
jectory. Over the left half of the trajectory, (i.e., the
restricted problem) particle energy both diminishes by
radiation and increases at the expense of a loss in the
“stored” energy in the fields. To within the order of
validity of this calculation,12 one finds that the energy
gained from the fields exceeds the energy lost to radia-
tion by the factor 2 [compare (23b) and (24)]. The net
gain, given by (25), may be expressed as

5T = 80/7’
where &, is the point charge self energy

2 0
8y =5 dk.
°" 8re, fo

In the limit v — ¢, §, approaches zero. This is a mani-
festation of the fact that at this speed, stored energy
gained is balanced by radiation lost.13 That is,a mea-
surement of particle energy at the surface of the plate
would, in this idealization, reveal no increase of initial
particle kinetic energy. Over the entire trajectory, on
the other hand, particle energy change is due only to
radiation loss and by (23) is

&, = yp28,.

In the ultrarelativistic limit (v — ¢) this loss increasesl2
as vy.

V. EQUIVALENT PROBLEMS

Finally, we consider four additional problems. First,
suppose the charge stops at the plane. In this case,the
current is given by

e, 0 = evs(z — vt) 5(x) 6(v) 6(— DK,

where 6(z) is the unit step function

te
> 2
2<0 z2>0
L
(a)
+e +e
z2<0 1 1 z2>0
(b) (c)
+e -e -e +e
—— g L e B e
z<0 2>0

(d) (e)
FIG. 6. The equivalent problems. For a z < 0 observer the original
problem (a) is equivalent to: (b),a charge + ¢ moving from (z2,0)=—w
and stopping at the plane: and (d), two opposite charges approaching
each other and disappearing at (z,#) = 0. For a z> 0 observer (a) is
equivalent to: (c),a charge + e starting from the plane at (z,£) = 0 and
moving to (z,#) = + %: and (e), two opposite charges appearing at
(2,¢) = 0 and separating from one another.
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He(r,t) =

z>0,

1,
6(2)={ z2<0

0,

In order to proceed from (1), the Fourier integral of
j{r, t) must be computed. For this purpose we introduce
the representation

etaz

. i +eo
f(z) = lim —
(=) €0 wa“‘” a t+ i€
to obtain
+00 eiat

j(r,w) = im — ” ewt §5(z — vt dadt
e, @) e=»0 271 T® ( ) f’°° a +ie
0, z2>0,

> explie/v)w], 2<0,
where the irrelevant spatial dependence of j(r,t) has
been suppressed. For 2z < 0,this problem is identical
to that considered in the paper, wherein j(z, w) = (1/v)
exp[i(z/v)w]. '

Similarly, for z > 0 the problem of the particle pass-
ing through the plane is found to be equivalent to that of
a charge starting at the plane and moving uniformly to
infinity.

Thirdly, we consider the annihilation of two opposite
charges moving uniformly towards z = 0 in the absence
of the plane. Here,

jle, ) = evd(x) 6(y)[6(z — vt) + 6(z + vt)]6(— Dk
and we find
iz, 0)= 1 expl— i(l21/v)w).

Again, for z < 0 this problem is equivalent to that
treated in the main text of the paper. In that analysis
we introduced the plane by requiring the tangential
electric field to vanish at z = 0. In the present annihi-
lation problem, however, the tangential field naturally
vanishes at .z = 0, and the restriction is therefore of
no consequence.

Finally, we note that for z > 0 the main solution yields
the fields of the creation of two opposite charges at
z = 0 which separate uniformly to z = + «, In all cases,
all observers see zero total charge.

In summary, then the problem of a uniformly moving
charge passing through an infinitely conducting plane
contains the solution to the following problems: (1) For
z < 0,the problem of a charge stopping at the plane and
giving rise to the Bremsstrahlung fields of pair annihi-
lation (see Fig. 6b, d). (2) For z > 0, the problem of a
charge starting at the plane and giving rise to the
Bremsstrahlung fields of pair creation (see Fig. 6c, e).

It should be noted that these fields represent pure
transition radiation. In the case of a plane with struc-
ture, Bremsstrahlung radiation arising from collisions
within the plane must be distinguished from these tran-
sition fields.
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APPENDIX A: INVERSION OF THE PARTICULAR
SOLUTION

From (3), we wish to evaluate

1 8 ' et explilz/v)w]

(2m)3 3t e w a? — (w2/v2)
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X ginx*Ey-wdgndidw,
where a2 = (w2/c2) — (n2 + £2),
Introducing the polar coordinates #2¢ @ g and

y=p sin
integration variables Jzxcpos¢’ yields
e = "€ (y2,2)
T emz Y

. + iwl(a/v-2)

X sing J(kpy2 [T LT
fO 1 f.oo w2 + (_va)z

Simple poles occur at w = + {ywvk in the w plane. For

z > vt the contour is completed in the upper plane, and

for z < ot in the lower. In both cases the results are

the same yielding

(—e)

He(r,t) = _:_Q yv sing fooo J,(kp) ke vk 2ot gy
T

dwdk .

= P
= Yo .
47 [02 + y2(z — v#)2]3/2

APPENDIX B: EVALUATION OF =,

In this section we evaluate the sum

-9 *
E1=‘_‘ grkizip-ot) E (— 1)~
YK n=0

2n-1' w0’
><< 2 D=2+ 2D [y(1~p))m2n

m=0 m=2n
+ of;,o fy(1 — ﬁ)]m“2"> Jy,(iklzl)d, (ket)

which appears in Sec. B. To do this, we consider the in-
tegral

= f:l Tk VI E = [z [2) e rvn 0ule) gu,

By an analysis similar to that for I¢}, and I,
the expansion

: T2 kGziren) S
Dy =t emvnizn (- pa
b4 n=0

2n~1"
x( >
4]

m

we find

[y(1 —g)J2nm + ‘iz (= ) mfy(1 — g)]m2n

+ 5 Ompa _B)]Wzn) g, G 12D, (12 ).

m=0

However, the integral 2, can also be obtained exactly,©
and is found to be
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’ 1
21 = -~ g yvkteg lzlky,
Ky

We now suppose both 21 and Z}'l to be functions of vy,
and by inspection find

21(7,) = g RyvKt Z'l(._ y) = e—27vkt<__?1_ etyvrt gt lz!xy)
Y
=_.1_,e“)'x(vt-lzl).
Ky
Returning to Eq. (6), then, we have

H (due to 23,)

- . d
= H? - Sgn(Z) ( e) Y Slnd’ a‘[ foco J]_(KP)K Zl('}/)d,(
T
= H? — sgn(z) (; e) yv sing fow Jl(Kp)ngk(vt*!zl)dK
T
+H, 2z2<0,
=Hg + [z |< ut.
—HZ, z2>0,
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The equations of isentropic rotational motion of a perfect fluid are investigated with use of Darboux’
theorem. It is shown that, together with the equation of continuity, they guarantee the existence of
four scalar functions on space—time, which constitute a dynamically distinguished set of coordinates.
It is assumed that in this coordinate system the metric tensor is constant along the lines tangent to
velocity and vorticity fields. Under these assumptions a complete set of solutions of the field
equations with 7, = (¢ + p)uu; — pg, is found. They divide into three families, first of which
contains six types of new solutions with nonzero pressure. The second family contains only the
Godel's solution, and the third one, only the Lanczos’ solution. Symmetry groups, exterior metrics,
type of conformal curvature, geometrical and physical properties of the new solutions are
investigated. A short review of other models of rotating matter is given.

INTRODUCTION

It was not long after the creation of the general rela-
tivity theory that people tried to construct a solution of
the Einstein field equations for rotating matter. The
problem was interesting both from theoretical and
observational point of view because nobody knew how
to describe the rotational motion in the formalism of
general relativity while many stars and galaxies ex-
hibited visible rotation. Today even the possibility of
rotation of the universe in the large is admitted.!

However, for quite a long time models of rotating
matter were constructed under very special assump-
tions. The authors either used the method of “slow
rotation” approximation (first paper by J. Lense and
H. Thirring? in 1918) or assumed the energy- momentum
tensor corresponding to dust (K. Lanczos3 in 1924 and
many others). It was not till 1967 that M. Trimper4
clearly stated the problem of searching for solutions
with pressure different from zero, but he has just
written down the field equations and stopped after
arriving at some general statements. There were a
few papers whose authors went further but they left
the problem behind when the equations were simplified
and nearly integrated (i.e.,there remained only one or
two equations to be solved). They gave at most special
cases of solutions which were mathematically simple
(e.g., J. Stewart and G. F. R. Ellis,® J. Wainwright. 6)

Until 1972, in fact, just two complete results were
obtained—by H. D. Wahlquist? in 1968 and E. Herlt8 in
1972. The aim of the present paper was to supply new
metrics of this kind. I have used the method of descrip-
tion of the isentropic rotational motion of the perfect
fluid introduced by J. Plebanski.® Under the assumptions
which are clearly stated in Sec. 1, the field equations
were completely integrated. The resulting metrics
divide into three families, the first of which contains six
types of new solutions with nonzero pressure. Each of
the other families contains just one solution known
before.

’

The first family solutions are investigated in detail.
Their symmetry groups, exterior metrics, type of con-
formal curvature, geometrical and physical properties
are established and discussed. A few special cases are
investigated in more detail. I also give a short review
of the solutions found by other authors.

Most of the material presented in Sec. 1 is taken from
J. Plebaniski's paper.?
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1. THE EQUATIONS OF MOTION AND
DYNAMICALLY DISTINGUISHED COORDINATES

Throughout the paper we shall use the signature

(+———). The equations of motion of a perfect fluid have
the form:

Teb 5 =0, (.1
where

ToB = (e + p)ucub — pgob, (1.2)

The quantity (€ + p) is called the enthalpy density. Let
JC denote the enthalpy per unit mass,

3= (e + p)/p, (1.3)
where p is the density of the rest-mass. Independently
of (1. 1) the conservation of the total rest mass is postu-
lated:

(pux),, =0. (1. 4)

i

By virtue of (1. 3) and (1. 4) Egs. (1. 1) take the form

O:Taﬁ;B:puﬂ((}Cua);B—p)a, (1.5)
The enthalpy in phenomenological thermodynamics
obeyed the following identity:

dx = (1/p)dp + TdS. (1. 6)

This equation may be considered to be the definition of
temperature and entropy in general relativity, Namely,
only two of the state functions (¥, p, p) can be indepen-
dent. Therefore the form (d3¢ — (1/p)dp) has an integ-
rating factor which we denote by 1/7T and its inverse we
call the temperature. Then the form (1/T)(d3 — 1/p)dp)
is a total differential of a function S which we call en-
tropy.

With the help of (1. 6) we get in (1. 5)

plud(u,),, —3% , + TS =0

17

Now the identities u*u, =1 andubu, = 0 allow us
to write (1. 7) as

[(eu,) ,— (u,) Jub+ TS _ =0, (L. 8)

These are the equations of motion of a perfect fluid in a
form equivalent to (1. 1),
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We shall confine ourselves to isentropic motions,
where S _ = 0. Then (1. 3) and (1. 6) imply

d[{e + p)/p]=(ap)/p. (1. 9)

We see that de = [(e + p)/pldp and so € = €(p), p=p(p);
in other words, p = p(p) and € = €(p). Thus (1. 9) is an
ordinary differential equation, and we can integrate it to

obtain
ap_ )
p(p)

€+ p=pc? (Ho +
where H, = const. If we assume that €(p = 0) = p(0) ¢2
then H, = 1. Let us denote

1 2

‘0—2‘ o (1. 10)

def 1 p dp
H= H,+ — Sl A (1. 11)
O ez 70 p(p)
Then Eqgs. (1. 8) with S o = 0 take the form
[(Huy) o — (Hup) ,]uf = 0. (1.12)

Now we recall two theorems which will be useful later.
We give both of them in the special case of a four-
dimensional manifold. Their general forms can be found
in Refs. 10~-12.

Theovem 1 (Darboux): Let w be a differential form
of the 1st order, then

(1) (dw N dw = 0)<=> (there exists the set of functions
o, 7,%,n such that w = od7 + nd§);

(2) (dw A dw=0but wAdw = 0)<=>(0c =1 above);
(3) (wA dw =0butdw = 0)<=> (£ =11in(1));
4) (dw=0<>(0=£f=11in (1))

Its proof is given in Ref. 10.

For an antisymmetric tensor F_, the following form
can be defined:

Pf(F,z) =3 €2818F ,F ¢ (1.13)

where €287 % js the Levi~Civita symbol. We have
Theorem 2:
[PF(F 512 = det(F ).

The proof can be found in Refs. 11 and 12.

def

Now let F g = (Hu ) o — (Hug) .. We see from
(1. 12) that det(F ;) = 0 and so from Theorem 2
Pf(F,,) = 0 which means that F{,, F,;; = 0.

Let us define w = Hu ,dx*. Then F_gdx® A dx® =
— 2dw, and so dw A dw = 0.

Now Theorem 1 implies that there exist functions
7, t,n such that w = dr + ndé§, i.e.,

(1. 14)
(1. 15)

Hua = T,Ct + T"E’

o

Fog=8 .M p— &M, o-
This representation of Hu , is introduced and discussed
in more detail in Ref. 9.

When F = 0 we call the motion irrotational. When
F,g # 0 wecallit rotational. To distinguish rotational
and irrotational motions we can use as well the vorticity
vector w:
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wa :——(-.g)‘l/ZeElB}’éuBuy‘é. (1_ 16)
In the local inertial frame at a point p [where u% = 6§,
&,5(p) = diag(+ 1,— 1,— 1,— 1)] the vector w« has the
components w® = (0,—~ (1/c)W) where W = rotv, v — the
Newtonian velocity vector. Thus the differentiation be-
tween rotational and irrotational motions based on w«
agrees with that in Newtonian physics. Moreover, we
have

Theovem 3:

(Fog =0 <= (w=*=0).

Therefore, this differentiation agrees with that based on
F 4,too. Consequently, we can consider F_, to be the

angular velocity tensor. But there is a definition of the

angular velocity tensor, given by J. Ehlersl3 14

QaB:u[a;B]~u[a;lplupuBJ (1.17)
With the help of the equations of motion (1. 12) it is easy
to show that

F g=2HQ 4, (1.18)
so our definition of rotational motion agrees with that of
Ehlers.

From now on we shall deal with rotating matter only,
S0 we assume
F,y =0.

a

(1. 19)

It means that all the three functions in (1. 14) have
linearly independent gradients. Equation (1. 12) implies
that u*¢  =wen , = 0. This, together with the equa-
tion of continuity [ff— £)1/2 pur] , = 0,allows us to de-
fine the fourth function ¢ in the following way:

(—g)irz pua=€aﬂyég’ﬂ7]'yclé_ (1. 20)

(For the details see again.?) By contraction of (1. 14)
and (1. 20) we get

(1. 21)

g:-—g-2H-2< (1, £,m,8) >2

3(x0, x1, x2, x3) ’

If (1. 14) and (1. 20) are assumed, then the equations of
motion and continuity are just identities.

Of course we can use the functions (7, £,7, {) as new
coordinates. If we do,then (1. 14), (1. 20), and (1. 21) re-
duce to

ue = H6§, (1. 22)

u, = H169 + x2H1 8%, (1. 23)

g = — p2H?Z (1. 24)
We also have

we=pH164 (1. 25)
and, since u = gaPuP s

8oo = HZ,

g01 = sz‘Z, (1. 26)

8oz =803 =0

The functions (7, £, 7, ) are not unique. The coordinate
transformations preserving the properties (1. 22)~(1. 26)
are of the form:
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x0 = x0' — S(xl’, x2"),
xt = F{a¥, 227,
x2 = G(x1', x2),

x3 = x3" + T (1" x2),

(1. 27)

where T is completely arbitrary, while F and G must
obey the equation

F 1G4 —F 5 G =1 (1. 28)
S is fixed by the equations
GF , —x2"=S ., (1. 29)

GF 3= 5,

We see that one of the functions F and G is arbitrary and
once it is fixed, the other is given by (1. 28). Therefore,
together with 7 we have two arbitrary functions in (1. 27).
Notice that all functions in (1. 27} depend only on two
variables x! and x2,

Now the idea arises: If the whole metric tensor also
depends only on x! and x2, then the transformations
(1. 27) may allow us to simplify the metric further. So
we assume

B W =0
ox0 Bas = ax3 Kap =7

This condition is covariant with the transformations
(1. 27). As a consequence of (1. 22) and (1. 25) it can be
written as

(1. 30)

8, 8. =C,845 =0, (1. 31)

where 2, = ux(3/3x%), 9, = w*(3/0x™).

These two assumptions are sufficient to integrate the
Einstein field equations for the metric fulfilling (1. 24)
and (1. 26) to the very end. No additional simplifying
assumptions are made here. We shall explain the geo-
metrical meaning of the assumptions (1. 31) later.
Notice that the first of (1. 31) means that « ¢ is colinear
with a timelike Killing vector, so the expansion and
shear of the velocity field vanish.

2. FIRST INTEGRALS OF THE FIELD EQUATIONS
AND CLASSIFICATION OF THE SOLUTIONS

Since there are two arbitrary functions in (1. 27), we
can expect that it will be possible to make two more
components of the metric tensor equal to 0. It is really
the case. If we choose F, G,and T so that the equations

g22F 1 Fo —gl2(F .Gy + Fy Gq) +g11G G 5 =0

and @.1)

Tyo=—(813/833) F 1+ — (8£33/833)C (2.2)
hold, then in the new coordinates (x9, x1', 2" x3") we
have, in addition to (1. 24) and (1. 26),

g12:g13:0 (23)

The set of Egs. (1. 28)-(2. 1) makes sense no matter
what g 5 is. Equation (2. 2) makes sense because,
Theorem 3, (1. 19), and (1. 25) imply that g, = 0.

Substituting (2. 3) in (2. 1) and (2. 2), we get a new set
of equations which determines the transformations (1. 27)
preserving all the properties (1. 24), (1. 26), and (2. 3).
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From now on there is no arbitrary function in (1. 27).

It is time to use the field equations. If the right-hand
side of the equations

= 8nk/c?,

(2. 4)
is given by (1. 2), (1. 11),and (1. 10), then it must be
RO, = R}, = 0. These two equations when integrated
yield the result

Rey=(k/c2)(Teg — 3 6%, T) + Ab* g,

o3 = (xz):‘s’gg, (2. 5)

where K is an arbitrary function of one variable. Now
we can verify that the coordinate transformation

x0 = x0" + x1'x2"

Xt o= x27) x2 = — xV, (2. 6)

ff

x3 = x3" — f K{x2)dx?

fulfills all Egs. (1. 28), (1. 29), (2. 1), (2. 2), and yields, in

addition,
ga3 = 0. (2.7

In the new coordinates it is easier to compute the Ricci

tensor. From the equations Ry = R2 = 0, we easily
find that

g33=GpLH3, G=const<Q. (2.8)
We classify the solutions into three families:
Family I in which

po*0, p=0 (2.9)
Family II in which p__ = 0 and consequently

H_ =p.,=0 (2.10)
Family IIT in which

p=0. (2.11)

This classification is invariant, We are going to discuss
each family separately,

3. THE FIRST FAMILY OF SOLUTIONS

Using the complete set of the field equations one can
prove that by a suitable choice of coordinate system we
obtain

p=p(x?), andso H=H(x2), p=px2). (31)
Then the field equations reduce to the set of ordinary
differential equations,and after integration they yield

ds? = H2(dx0% + 2x2H-2 dx0%dx! + [(x2)2 — W/G]H-2(dx)2

+ (WpH) 1(dx?)2 + Gp ™ H3(dx3)2, (3.2)
where
W= (G + k(x2)2 + Bx2 + E, B,E = const, (3.3)
S Gx2
p=D"— ex ( —~ dx?), D =const< 0, 3.4
e ([ &2 ) n (3.4)
H={Mu;, +Nuy|*/3 M N =const (3. 5)
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#y and u, are the linearly independent solutions of the
equation

W, —~ Gx2
U oyy B 73PN
3 W .. W2  Gx2W G
+__<___'£ -'_g_~———’—%+—>u=0. (3. 6)
4 w w2 w2 w

The pressure p is given by the formula resulting from
(1. 11):

p=c? [ pH odx2 + py,.

Whenever an inequality for a constant appears above or
below, it results from two conditions:

(1) p,p,H>0,
(2) The signature of the metric is (+ — — —).

The absolute value in (3. 5) is needed to assure that
o> 0.

The solutions of the first family divide into six types
according as to whether W has two complex roots, two
real roots, one real root or degenerates to a polynomial
of a lower degree,

(3.7

It is clear from (3. 4) that when the sign of W is not
the same for all values of x2,then p may be positive
only in some range of values of x2. The boundaries of
this range (i.e., the roots of W) are singular points of p,
and outside of this range p would be negative. In such a
situation we have to find some exterior metric and
match it to (3. 2) so that the complete space~time has
no singularities. This is done in Sec. 7. In the formulas
given below an auxiliary constant @ 4¢f G/(G + «) is
occasionally used.

Type {
W=(G+k)(x2—p)(x2—¢), c'=b* a>1 (3.8)
gy =utu,  ug=—i(u—u*). (3.9)
= x2 — b>ﬂ<x2 — c’)y
-<c’~ K/\b—K
x2—p
XF(O!+B+7,a'+ﬁ+)’,1+ﬁ—f3',c, b)’ (310)
K=const=K* F{(.,.,.,.)the hypergeometric function.
* % = L[a— 3 (a®— 3a + 3)112) (3. 11)
a/
1
o (:—— {—(a—2)b-— 2¢’
gy 2(b—c’)
#[a2b2 + (b — c)(b— ¢’ — ab) 72}, (3.12)
¥
= {2+ (a— 2) ¢
Y'é 2(b—¢’) 53*
+ [a2¢'2 + (b— ¢ )b~ ¢’ + ac’)[L/2} =Yg
(3.13)
Type 1}
W= (G + k) (x2~b)(x2—¢"), bandc real, b<c
(8.14)

u, is given by (3. 10), u, is the standard second linearly
independent solution.15-17 The formulas for a,a’, B, 8,
v,y are identical with (3. 11)~(3. 13). This time no ana-
logue of the equations y = 8* and ' = g’* holds.
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The sign of W is not constant. For x2 = b and x2 = ¢’
the solution has singularities. When a < 0,the density
of matter is positive in the region b < x2 < ¢’; when
a > 1 it is positive in the nonconnected region x2 < b
and x2> ¢,

Type i
W=(G +«k) (x2—-8)2, b=0, a>1. (3. 15)
w, = (x2 — b) F(%—~qi,4~ a—2q,, 2"” > i=1,2,
¥ —b (3. 16)
F(., ., .)—the confluent hypergeometric function.
)
1%:%[3—(1:& (a2 — 3a + 3)1/2], (3.17)
9 )

W has a constant sign,but x2 = p is a singular point of
the solution.

Type IV
W= (G + x)(x2)2, a>1. (3. 18)
w, = (x2)%,  i=1,2, g, givenby (3.17). (3.19)

Again W has a constant sign,but x2 = 0 is a singular
point.

Type V
W = Bx? + E. (3. 20)

Here the coordinates can be chosen so that B = k. We
denote E = kE, and we get

u, = [exp(x2 + EQ)|(— x2 — Eg)“ Flg, + Eq— 1,2g;

+Eg—1,—x2—E), i=1,2 (3.21)
q1 l
‘125

The density of matter is positive in the region x2 <— E,,

=3[2—Egt (BF— B+ 1}/2) (3.22)

Type VI
W=E-=const< 0, (3. 21)
U = F(%;%s(K/ZE)(xz)ZL (3 22)

uy=x2F (5, 3,(k/2E)(x2)?).

4. THE SECOND FAMILY OF SOLUTIONS

Here the field equations reduce to one partial differen-
tial equation, Again it can be shown that by a suitable
choice of coordinates the metric can be made dependent
only on one variable x2, Then the solution appears to be
unique (exact to coordinate transformations):

ds? = H-2(dx® + x2dx1)2 — § H-2(x2)2(dx1)2

— [kpH(x2)2] 1 (dx2)2 — 2xp L H3(dx3)2, (4. 1)

where
p,p > 0 are arbitrary constants, (4. 2)
H=1+ {p/c2p) = const, (4.3)

A = 3k[p— (p/c?}] is the cosmological constant.
(4.4
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The metric (4. 1) was found for the first time by H. M.
Raval and P. C. Vaidyal® and is a generalization to the
case of constant but nonzero pressure of the well-known
solution of Godell? [if p = 0 then (4. 1) is precisely the
Goédel's metric]. It is the limiting case ¢ = 2, M = 0 of
the Type IV solution from the first family.

5. THE THIRD FAMILY OF SOLUTIONS

One sees that when p = 0 (and consequently € = pc?2),
then the equatlons of motion (1. 1) can be written in the
form (w5 — ug ,)uP = 0,and thus are the special case

=1 of Eq. (1. 12) Therefore all the formulas up to
(2 8) hold for dust if p = 0 and H = 1 is substituted
there. This time again one verifies that such coordi-
nates exist, in which p = p(x2). The solution is unique:

ds? = (dx%)2 + Zaczabcoalx‘1 + x2(x2 + 1){dx1)2

+ 0 (@x2)2 — K ex2(axd)2,  (5.1)
Kax? a
where
p=ae**, a=const > 0. (5. 2)

The metric has the proper signature in the region

x2< 0, Here necessarily A = 0. This metric was found
by K. Lanczos3 in 1924 and was the first exact solution
with rotating matter in the history of relativity. It was
rediscovered next by W. J. van Stockum?290 in 1937 and

J. P, Wright21 in 1965. In fact, Lanczos and Wright also
found the generalization of (5. 1) to the case A = 0,but
this generalization does not fulfill the second of (1. 30).

Equation (5. 1) is the limiting case E, =N =1,
M = 1 of the Type V solution from the first family (rep-~
resented in slightly different coordinates, related to
those of Type V by the transformation x0 = x0’ + x1,
x2 = x2" — 1).

6. SYMMETRIES OF THE SOLUTIONS

I will not investigate the second and third family of
solutions as they have been considered by many other
authors.3-6.18-22 The symmetry group for all the
types of the first family solutions consists of the follow-
ing transformations:

x0 = x0" + ¢,

xl=xV + 4,
. (6.1)

3 — 43’
X3 =x2 + 1,

x2 = x2

with ¢y, ¢;,f5 = const.

Thus it is 3—parametric Abelian group with the Kill-
ing vectors k( iy = 04 t =0,1,3. It acts simply
transitively on the timelike hyperSurfaces x2 = const.
Such groups were classified by Bianchi into nine types. 23
(In fact, Bianchi classification is usually applied to
groups acting on spacelike hypersurfaces, but no speci-
fic signature of the metric on the hypersurface is
assumed and therefore such a classification is true for
timelike homogeneous hypersurfaces,too). Since the
group of transformations (6. 1) is Abelian, it is of
Bianchi Type I, and the hypersurfaces x2 = const are
flat. Notice that the group (6. 1) is completely charac-
terized by four statements:

{1) There exist three commuting Killing vectors

ke kb Ed# whose integral lines are the coordinate lines
() (1) (3)

(x0, x1, x3), The x0 line is timelike.
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(2) The x2 line is orthogonal to all the three (x?, x1, x3)
lines.
(3) g, koks =g, kitr =0.
Yor® Y@
4 g, kukv = 0.
) L

7. EXTERIOR SOLUTIONS

It is reasonable to look for exterior solutions having
the same symmetry group as the interior ones to which
they are to be matched. Taking Statements (1)-(4) above
as axioms, we arrive at the metric form

ds? = (adx0 + Bdxl)2 — (ydx1)2 — (5dx2)2 — (edx3)2,

(1. 1)
where o, 3,7, 6, € are functions of one variable x2. Two
cases must be considered separately: (/@) , =0 and
(B/a) 4, = C.

In the first case the metric (7. 1) is static. The only
nonflat solution of the empty space field equations (with
A = 0) is then

ds? = A (x2)2a(dx0 + Sdx1)? — A2(x2)"261)(dx1)2

— A} (x2)2a(e-1)(gx2)2 — A2(x2)2a@ ) (gx3)2, (7. 2)
where A,,...,
(7. 2) is flat.

In the second case (7. 1) is stationary, nonstatic, and
(8/) can be taken as a new coordinate x2. Then (7. 1)
becomes closely analogous to (3. 2). The solutions of
the empty space Einstein equations with the A term
divide into four types and are given by the formulas

ds? = f~2(dx0)2 + 2x2 f2dx0dxl + [(x2)2 — V] f~2(dx1)2

2 x2
exp (—— —‘7 dx2>(dx2)2

A;,S,a=const. If a=0o0r a=1,then

sf6
Vv x2
— L exp(— [ % ax2)(dx3)2 7.3
szxp(fvx)(x), (1.3)
where J2 = 0 < s are constants and
=(x2)2 + px2 + ¢, p,q = const, (7. 4)
f =(Pvy + Qu,)1/3, P, Q= const. (7. 5)

vy and v, are two linearly independent solutions of the
equation

Va2~ VUV,p— x2)v,

3 14 V2
—(_ 22 4 22 +~>v=0. (7.6)
4 14 V2 & 4

Now compare (7. 3)-(7. 6) with (3. 2)~(3. 6) and note the
similarity.

Type A

%2V, 1

V=(x2—po)x — qo),  dp =P (7.7)
<x2~p0)u %2~ go\¥
v, = < )
2 __ a2 v’ .
02:<x p;,)“ <9; q;) . L=L*= const.
qo— 0—
i
Iy }: 20py— ¢ )[p°‘2q01<1’3—170qo +q2)1/2) (1.9)
0 0
Vl (u
= 200 — Go ¥ (P3—poag + q2)V/2] =)" |
v 2(p, —qo)[ o 07 Poffo TAGTEI=Y
(7. 10)
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A = (s/3J2)PQ(PE — bodo + 98N po— L)*(gq — L)?,

(7.11)
where 2 = — qo/(pg— qq), 1= po/ (Do — qq)-
Type B
V= (x2 - po)(x2 — q,), bPoand gg real, p,< g,
(7.12)

The formulas for vy, vy, i, ', v, v’ are identical with
(7.8)~(7.10), but now pu* =y, p'* = p’. For x2 = p, and
¥2 = g, the metric has singularities, and it has the
proper signature in the nonconnected region x2 < p,
2(1'121d .\')2 > g4 The cosmological constant is given by

L 11).

Type C
V= (x2—py)2,  p, =0, (7. 13)
v = {xz_po [372
(7.14)
vy = vy eXplpo/ (52 — p))
A = (s/3J2) PQPE. (7. 15)

The signature is proper for all values of x2,but x2 = p,
is a singular point.

Type D
Vo= (x2)2, (1. 16)
v = 1x218/2, = [x2]1/2, (7.17)
A =— (s/3J23) Q@2 (7.18)

Again the signature is proper everywhere,but x% = 0 is
a singular point.

Now we have to say how these solutions are matched
to the interior ones. The solutions of Types I, III, IV,
and VI can have the exterior metric of Type A only.

For the solutions of Types II and V the exterior metric
is of Type A if the joining point x2 = 7 is at a distance
from the singular point greater than some critical value.
Ctherwise the exterior metric¢ is of Type B {or C}, but
both singularities of Type B metric (or the singular
point of Type C metric) appear outside of matter.

It is interesting that all the four types of stationary
exterior solutions can be obtained from the first family
solutions by a formal substitution x = 87k/c2 - 0.

Then Type I reduces to Type A,II reduces to B, III to
C and IV to D. For obvious reasons the Types V and VI
have no such analogs. The static metric (7. 2) was dis-
covered by E. Kasner24 in 1925, Some cylindrically
symmetric empty space solutions were considered by
T. Lewis25 in 1932. Kasner's solution (7. 2) was one of
them, but also there appeared Type A metric in the
case ) = 0. The Type C metric in the case P =0 is
contained in Lewis' class,25 but it is not given ex-
plicitly there. Finally,in the case A = 0 all the met-
rics from the present section are of the form given by
Dautcourt, Papapetrou, and Treder. 28, 27

It should be emphasized that these references are
rather accidental. The empty space metrics play only
an auxiliary role in my paper, so I did not carry out
any systematic search in the literature. In particular,

1 do not guarantee that the generalization of the station-
ary metrics to the case A = 0 is a new result. The
generalization of (7. 2) to the case A = 0 is unexpectedly
very involved, so I do not present it here.
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8. THE TYPE OF CONFORMAL CURVATURE

A special solution of Type IV from the first family is
of Petrov type IL 1t is the metric

ds2 = N-2/3 (xz)l-\/'z‘[(de)z + 2x2dx0d 1
+ 2(V2 — 1)(x2)2(dx1)2] + DN-2(x2)-5VE (42)2

+ (4DN2/3)‘1Kz(x2)‘3‘/5(dx3)2. (8. 1)
All the other first-family solutions are of Petrov type I
(general).

9. GEOMETRY OF THE SPACE-TIME

We have noticed in Sec. 6 that the hypersurfaces x2 =
const are flat. Therefore, they can be embedded into the
Minkowski space, i.e., they can be realized as some
hypersurfaces x2 = const in the Minkowski space. It
appears that this may be done only in four ways. The
surfaces x© = const, x2 = const can have the following
geometry:

(1) Euclidean plane,

(2) surface of a cylinder with x3 as the azimuthal angle
and the x1 line as the generator,

(3) surface of a cylinder with x1 as the azimuthal angle
and the x3 line as the generator, parametrized by an
observer at rest,

(4) the same surface as in (3), parametrized by an
observer rotating about the axis of symmetry.

Since the velocity field is given by (1. 22) and (1. 23), we
see that the particles of the fluid move inside the x2 = C
hypersurface and follow the x1 lines. Moreover, we

know from (1. 25) that the vorticity vector is tangent

to x3 lines, and we can compute quite easily the accelera-
tion vector &, = H1 H , 52 which is tangent to x2 lines.

This is enough to decide which case listed above is
realized in our space—times of the first family. In
cases (1) and (2) the acceleration, if present, is tangent
to x1 lines because the streamlines are straight. In
cases (3) and (4) the acceleration has the direction of
the radial line x2, just as in our metrics. We decide that
case (4) is a better model of our space—time since we
do not expect that in the presence of rotating matter an
observer at absolute rest would exist. It means that our
space~time, when realized nonrelativistically, consists
of co-axial cylinders rotating around an axis of sym-
metry with different angular velocities. All the physical
quantities are constant on the surface of a fixed cylinder,
but they vary from one cylinder to the other. The x2-
lines are geodesics orthogonal to the cylinders, x! lines
are azimuthal circles,and x3 lines are generators. Now
we see that the second of the assumptions (1. 30) meant
just homogeneity in the direction of generators. We did
not assume axial symmetry, but it resulted from the
field equations.

10. PHYSICAL PROPERTIES OF THE SOLUTIONS

The velocity field has no shear or expansion,but it has
rotation and acceleration, Rotation produces no red
shift. According to Ehlers' formulal3 the red shift is
equal to

{dr)/x =— 1,0, xe, (10. 1)
where @, = H1H ,52 ,and
6, xo= (b y,— uu,y)b6x8, (10. 2)

6x8 being the infinitesimal vector pointing from the ob-
server to the particle sending light signals to him. The
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TABLE L. Models of rotating matter.

Godell® 1949
*Wright21 1965
*Czsv4th30 1965
*Raval-Vaidyal8 1966
*Ellis22 1967
*Wainwright® 1970
*Ozsv4th3t 1970
Bray?2® 1972
*Krasifiski 1973

Lanczos3 1924

van Stockum?2© 1937
Wright2l 1965
*Ellis22 1967
*Krasifiski 1973

Maitra33 1966

Raval-Vaidyal® 1966
Stewart-Ellis® 1968
Wainwrighté 1970
*Krasifiski 1973

Ozsvith-Schiicking32 1962
*Ozsvath30 1965

Ellis22 1967
*Wainwright® 1970

Ozsviath30 1965

Stewart-Ellis5 1968
*Wainwright® 1970

Wahlquist? 1968 Wainwright® 1970

red shift given by (10. 1) is strongly anisotropic and thus
rather not realistic. However, it is not obvious that red
shift computed with respect to distant sources of light
would also have such a strong anisotropy.

It is interesting that p = p(x2) and p = p (x2), and so
we have an equation of state p = p(p) given in a para-
metric way, which resulted from the field equations. It
might be unexpected as one usually considers an equa-
tion of state to be independent of the field equations.
But if the metric tensor depends only on one variable,
the equation of state is always determined by the field
equations.

Now look at (3. 4), (3. 5), (3. 7),and (3. 8)—-(3. 13). There
are six independent arbitrary constants—D,M,N,G,b,c’
entering the equation of state p = p(p). In fact,this is a
large class of equations of state.

Cne may expect simpler results when the parameters
of the hypergeometric function in (3. 10) are such that
F(., ., ., .) degenerates to a polynomial. J. PlebariskiZ8
even suggested that then it would be possible to obtain the
equation of state in the form of the van der Waals iso-
therms.

This question has not been investigated.

In Type IV solutions if M = 0 or N = 0 then p and p
obey the polytrope type equation of state p-p~ 7 =const,
with [ba — 6 + €(a2 — 3a + 3)1/2]y = 6(a — 1), where
€ = + 1 corresponds to N = 0 and € = — 1 corresponds
to M = 0. The condition ¢ > 1 implies that y <0,
1<y <jory>%i

11. A SURVEY OF MODELS OF ROTATING PERFECT
FLUID OR DUST

This survey is made in the form of a table. Each
“cell” of the table represents one solution obtained by
different authors. A star preceding author's name
means that he knew his predecessors and did not expect
to be the first inventor of the solution. There is no star
at Bray's name in the “Gédel’'s cell” because his solu-
tions, when the electromagnetic field is absent, reduce
precisely to the metric of Godel, but this fact was not
indicated in Bray's paper. 29

For each of the solutions the coordinates (7, &,7,%)
from (1. 14), (1. 20), and (1. 21) can be introduced, but
this might be a subject of another paper.

No approximate solutions are taken into account.

A large expansion of this article is currently sub-
mitted to Acta Physica Polonica.
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The Liouville~von Neumann equation and a useful decomposition of the resolvent of the generator
of the time evolution operators are obtained in the formulation of quantum statistics by means of the
pair of Banach spaces (r ¢, B), where 7 ¢ is the space of the “‘trace-class”” operators and B is the

space of all bounded operators, defined on a Hilbert space.

1. INTRODUCTION

The theory of “independent subdynamics, ” developed
in Reis. 1-3, provides a new method to extract the macro-
scopic level from the quantum mechanical description
of a macroscopic system.

It provides also a possible way to realize the “em-
bedding” of the new axiomatic description of macro-
scopic systems, recently proposed by Ludwig,4 into
the quantum theory of N-body systems.

A similar but simpler problem is the “embedding” of
unstable nonrelativistic particles into a Galilean field
theory, which has been rigorously treated in Ref. 5.

An important step of the theory of indipendent sub-
dynamics is to set up a decomposition of the resolvent
of the generator of the time evolution operators by
means of a suitable projection (see, e.g. Refs. 6-10).

So far such a decomposition has been found only in
Hilbert spaces, as in the case

(a). of a pure states description as in Ref. 5; then the
generator of the time evolution operators is the
Hamiltonian operator; and

(b). of a statistical description in the Hilbert space of
the Hilbert-Schmidt operators, called the Liouville
space, as in Refs. 2 and 6; then the generator of the
time evolution operators is the Liouville-von Neumann
operator.

However the “Hilbert space” formulation of quantum
statistics is not satisfactory, since one must restrict
observables to be Hilbert—Schmidt operators.

In the physically interesting applications of quantum
statistics one deals with the mean values {(4), of
observables A which are bounded operators; the mean
values are given by the expression
Ay, =tr (AW(H)) [W() is the statistical operator]

(1.1)
Then a mathematical structure in which statistical
descriptions of physical systems can be formalized
in a more satisfactorv way is a pair of Banach spaces
which are in duality by the bilinear form (1.1).

Precisely we shall choose the pair of spaces (7¢,B)
where 7c¢ is the Banach space of all the “trace-class”
operators, that is of all the operators A defined on 9,
the “states-Hilbert space” of the given system, such that
tr((474)1/2 < w and B [or ®(H)]is the dual space of 7c,
that is the Banach space of all bounded operators on 9
(see Ref. 4).

In such a formalism the space of observables is much
“wider” than the Liouville space, and on the other side
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the space of the statistical operators is as “ small” as
possible, since the linear manifold spanned by the
statistical operators is exactly 7¢ (see Appendix).

Moreover, the choice of the pair of spaces (7¢B) is
suggested by the axiomatic foundations of quantum
mechanic proposed by Ludwig in Ref.11.

In this paper we use the pair of spaces (r¢,B) to re-
write the Liouville—von Neumann equation (Sec. 2) and
to find the decomposition of the resolvent of the genera-
tor of the time evolution operators (Sec. 3).

2. LIOUVILLE-VON NEUMANN EQUATION IN 7¢

Let 9 be the Hilbert space of the states of the given
quantum system,H = [ °°AdE, the Hamiltonian,
+ 00

U(t) =: exp(—iHt) = [ exp(—ixt)dE, the time evolution
operator. -

It is well known that the family of operators U(f) is a
strongly continuous group of unitary operators on 9.

LIST OF SYMBOLS*

(A) The symbol =: stands for “defined as:”

(B) Let X be a Banach space:
Xt is the dual space of X.
(frg)f e X*, g= X s the functional f applied to g

®(x) is the algebra of all linear bounded opera-
tors on X itself.

e(x) is the set of closed operators {rom X to
itself,

S X denotes that S is a subspace (that is a
closed linear manifold) of X.

St (S ¢ X) is the set of all f <~ X* such that

(f,g)=0 vg« S

(C) let A be a linear operator defined in a Banach space:
D(A) is the domain of 4.

®R{4) is the range of 4.

A" is the adjoint operator of 4, if it exists.
A is the closure of A, if it exists.

g4 is the graph of A.

nul{4) is the dimension of the null space of A.

(D) Let © be the Hilbert space of the system and A4, B two operators

defined on $:

(f,8 fgah is the inner product in 9.

((4, B)) stands for tr (A*B).

iAF is the usual norm of A. -

TAL, stands for (tr (A~A))1/2 = ({4, 4)).

FAll stands for tr ((A+A)1/2).

kB, B(H) is the algebra of all bounded operators on
$. Its norm is [- .

is the Banach algebra of all completely

continuous operators on 9.
Its norm is ;.- .

ac is the Hilbert space of all Hilbert-Schmidt
operators. Its inner product is (-, -J}.

TC is the Banach space of all the “trace-class”
operators. Its norm is -1 ,.

c.o.n.s. stands for “complete orthonormal system.”

2 For other notations see Lemmas A 1-A 5 in Appendix.
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Let us now consider the “corresponding” time evolu-
tion operator in the 7¢ space:

uh:
U(HA = URAU* (1),

TC ™ TC @.1)
v, VA € 1C '

(we recall that the product of any bounded operator with
any operator in 7¢ is an operator in 7c).

From the definition of A (¢) it follows that:

1. U(® is a group of operators on 7c,

2. V& U4 is an isometric operator,

3. v, /U@
4. (4 is weakly continuous at £ = 0.

] = 7c,

Let us prove these statements:
1. It is immediate.

2. Let{f,} and {g,} be any two c.o.n.s.in 9;

since v {, U(t) is an umtary operator on 9;

the mapping i, — {U*(#)f,} is a bijective mapping of
the set of all c.o.n.s.in $ onto itself. Then we have:

S Huwo ), ) =221 (WU (0F,, U (Hg )| < Iwl.
That is v c.o.n.s. {f} and {g, 1, EI(U(t)WU*(t /801 is
convergent for every fixed / and we have

lu@wiy = [U@OwWo+ ), = Lub., & (UOWU*@)f, g)

(FARYTS

= lub. (3] (WU V) = W],
AR

where the l.u.b. extends over the set of all c.o.n.s.
(Ref. 12,1, 2. 4).

3. It is immediate.

in

4. To show the weak continuity of U(¢) at ¢ = 0, we have
to prove that vA e B, vW e 7C

tr (U(HWA — WA) -0 fort—0

Indeed, v W e e and A € B let us choose a c.o.n.s. in
9, such that ?,,, fwf, I < oo,

Of such a c.o.n.s.there exists at least one (Ref. 12,
1.2.8). Then ve > 0, I N1(e) > 0 such that for
N = N1(e) we have

o llwrr Il < e/3lIAl
N71
and v e >0, 3N,(e) > 0 such that for N > N,(¢) we have
> (WAF,, 1) < €/3.
N1

Let N = max(N, N,); ¥ € > 0 3 6, > 0 such that vz =
0,1,..., N and V¢, |11 <6, , we have

—~WA)f, I < /3N

since U(f) is a strongly continuous operator at / = 0.
Then v ¢,

Hwu+(HAU(L)

l#] < &, we have
[tr (U(F) WU* (A —~WA)| = |tr WU (D)AU®)
IZ} ((wu+ (AU — wAlf,, F )

] E SAWUH(DAU@ S, 1) + | Z W(WAS,f,)]

— WA)|

1?1
< ?”H(WU* (AU — WA f, ]| + Z) LU AU@) f |
oo N+1
Twerl 45 < fe Al B Iwer,l < €
N-1
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(We recall that the trace of an operator in 7c is inde-
pendent of the choosen c.o0.n.s.)

Now using the general theory of semigroups and the
properties 1—4 above, it follows that the semigroup
U (), t > 0 verifies the following statements:

(A) U(y) is strongly contlnuous at ¢t = 0, that is
v W e rellu@w — wil, for t - 0* (Ref. 13,
Theorem 10.6.5.).
(B) A (#) is strongly continuous for f = 0 (Ref.13,
Theorem 10.5.5).

Uln) —1
(C) LetA =: _'_____(77 ™ and
n n
—i)}(:llmA (2.2)
70~

then XK is a linear operator densely defined in 1¢, gen-
erally unbounded and —i K is the generator of the semi-
group U(#) (Ref.13,Sec.10.3).

(D) We have YW & D(K)

s — d£ UEW = — i KWHW = — 7 UL KW 2.3)

(E) K is a closed opevator (Ref.13, Theorem 11.5.1),

(F) Every z with Im z = 0 belongs to the resolvent set
of XK.

Proof: first we have (Ref.13,Sec.11.5 and Theorem
12.3.1) every x with Re x > 0 belongs to the resol-
vent set of —¢K and it holds:

1

_ = fooe‘“‘u(x)dx (2.4)
AX+4 K 0O
’—1— <1 Rex>o. (2.5)
X +i7 XK Re
Then, let us consider the semigroup O (),
Vt): e > 7¢, VA =: U (DAU(H), VvAec71c, (>0,

The statements 1-4 and (A)-(F) obviously hold for the
semigroup U(f) also.

Let —i X be the generator of V().

Then
Oln) — I UR)~1 —1
—i K = s—lim _S_@__TC = s—lim ﬁ)—————rﬁ
n—0+ - 0+ 77
U —1I
= — s—lim U(n)! ﬂ__ﬂ .
n— 0+ 77
But s—lir% U@t =1,,so we have K = — X, then
> 0+

every x with Re x > 0 belongs to the resolvent set ot
73K and (2. 4), (2. 5) still hold for the operator 7K.

Finally, every z with Im z # 0 belongs to the resolvent
set of JK and we have

[ ! L Imz = 0. (2.6)
K —z | Tm z|
(G) vAc 7¢, Ve > 0 we have

. 1 1 § wric .
U(HA = gll_,xg 977 I fo aw f_wﬂ_e dz exp(—izt) —zA
(Ref.13,Sec.11.7-E. 7). (2.7
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(H) vA <€ DUK), ve >0 we have

e dz exp(—zzt)

UDA = ;131005”— I — 4 (2.8)
(Ref.13,8ec.11.7-E. 6).
() vC & DOK) we have

KC = [H,C] (2.9)

In fact, vC € D(K) and vf € § it holds that

CU* )—C ‘
(= o)
U(CU*(t) — C

!

since v f € D(H), lim,_, o+ UHC[U* (1)
[we recall that —

<

llwaHO for t — 0*

+ 1>KC1

— 1 )/l]j = {CHf
i{H is the generator of the group U({)],

then
U(t) —1, uicoH() —c¢
lim ——— L Cf :<lim vacrw —¢ t() f>
t—=0+ {—~0+
. (]r(t) - H&
(i e )
= —i(KC)f — iCHf.

Thus Cf ¢ D(H) and it holds that

HCf = (KC)f +CHf, v[fe DH), vCc DOK).

Now K C < 7c, then it is bounded and XX C > [H, C];
thus [4, (] is a bounded operator, its domain is dense in

7e and K C = [H, Cl.

(3 let w() =@ U(HW(0), applying (2.3) and (2.9) to
W(t) one has the Liouville-von Newmann Equalion in lhe
7¢ Spuce:

s% W) = — iKW = —i[H, W]

(K) since DK

[; 1 ] o1
K—2z K~z
Then even the spectrum of JK* is contained in the real
axis:JK'is obviously a closed operator on B, but its do-

main is not necessarily dense in B, since the 7¢ space
is not reflexive.

(2.10)

JK) is dense in 7c, K * exists and it holds:

(L) vA = D(K), we have

A e DCOK) and XK'A = KA. (2.11)
In fact,v A, B ¢ D (K) we have
B, — i}%A)

U4 — A .
= tr{{(B* lim — )= lim tr (B"
t—0+ t—-0+

] B-U(OAU() B+A
lim tr{————— ==
t+0+ t f

(WA>

Lt
= lim /&}

. [( t)BU(t)- )
t-0+
= lim tr l:< LB — B> ]
t—-0+
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UNnA — A
=)

Il

= lim tr
t->0+

since

VHNB - B VOB — B
— = IRBlst —= -

— ikRB||, » 0.

Then

) [(*o(z)b’ —3) } VB — B >
limtr || ———— ) 4 lim { — -, A
>0+ ! 10 {

. V@B —-B
<11m %T—’A> = (B, A).

t—+0-

Il

Il

Hence it follows the statement.

3. DECOMPOSITION OF THE RESOLVENT 1/(3k — 2)

Let @ be a projection operator defined on 1¢ with
range §.

Assume that @ verifies the following properties:

1.1 VA eT1c @A=0A

1.2 DEKE®) n DEK) = T¢

Now let us consider the operator

K= (1, — @)K, — @)

By 1.2 above, K is densely defined.
Moreover, let us suppose K verifies

.3 ROK —2z2) =7¢, Imz =0,

Afterward we consider the operator
K =1 @R 4 IKE 43k — OO,

Obviously K D X' and K’ is densely defined, by I.2.
Furthermore, let us suppose

1.4 Q®GK —2z) =7¢, Imz =0.

We make some remarks on the assumptions 1.1-1.4:

(1) If K® < ®(7c), assumptions 1. 2 and 1. 4 are an
obvious consequence of equation K = XK’.

(2) Assume the subspace § be finite dimensional.
Then assumptions 1.2 and I. 4 may be changed with the
assumption

1.2 8¢ DGK).
In fact, if 1. 2’holds K @ ¢ ®B(7¢) and by the former
remark, I. 2 and 1.4 are verfied as well.

Vice versa if 1.2 does not hold, we have § = ST
where § =: DUK) n $ and T is a suitable linear manifold
different from {0}.

Obviously, T n D(K) = {0} and so DEKS) o T = {0},
hence :D(TGX)S n T =1{0}. That is I.2 does not hold.
Moreover, as regards assumption 1.1 we note that
8 is a subspace of the Hilbert space oc as well, and
therefore a unigque orthogonal projection 4 of oc¢ on
§ does exist. The restriction Qg of ¢ to T¢ is ob-
viously a projection of 7¢ on 8, that verifies 1.1, and
we may consider Qg instead of ®@.

In the following we shall give some properties of the
operator JK:

(@) &K is closable.
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Proaf: ¥ and then K (I, — @) are densely defined,
therefore [K(1,, — ®)]* exists and it holds that

[»((HTC - G))]f o e ®) K.

T

Thus (I.,— ®)*XK" is closable and by (2.11) and 1.1 the
restriction to rcof (1, — ®)*K+is (I . — &)K.
Hence by Lemma A.3 {in Appendix) (I .— ®) XK is also
closable.

K is then closable because it is the product of a
closable operator with a bounded operator.

(B) VA& D(K) we have
KA= KA 3.1)
Proof: K> (1,,— @)K (1., — @)

and
DEK) =411, ,— ®)A & DOK}.

The statement follows immediately by (2.11) and I.1.

(y) (K ~ 2)-1 exists vz, Imz = 0.

Proof: Let A € D(Xk). Then

(K — 24l 2 > (R —2)Al2
= IOk —Re2)Al2 + {Imz|2]lAl2
= |Imz|2(4lZ2 >0
when

A=0, Imz =0.

(5) (}§< —z) lexists vz, Imz =0.
. Proof: Assume A, e D(GK). A, —All;, - 0 and

K - 2)Aa I, - 0.
Let us suppose ab absurdo A = 0,14
Then

1A, — 14, 1< 14, —Al, < 114, — All; -0,
thus

1A, liy — 1Al,.
By () we have (K —z)A [, = IImz[{A4_li,.
Hence

0

il

lim (R —2)A,l, = lim |Imz|lA_l,

n —~*co n-reo

ltm z] lAll, => 4 = 0.

i

() vz,Imz =0,

(k —2)1e B(rc) (3.2)

Proof: From above it follows that
ROK — z) D RUK— 2) = 7c.

Then applying the closed graph theorem, we have
()i( —2z)le B(re), vz withImz = 0.

Besides (k —2)-1 O (K~ 2)! and D[(K —2)1] = 7¢
hence it follows the statement.

We remark that from (K — 2)-1 ¢ ®(rc) it follows
that K is a closed operator.
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Let us now define the following operators:

1
N () =CK(I ., — @) — (I,,—®), Imz=0,
1 TC & — 2z TC ’ (3.3)
No(e) = (1,4~ @) x2e (I,, —®) K®, Imz =0,
K —z (3.4)

Mz) = @K (L, — ®)
K —2z

(1, — ®)KO — @K,
Imz =0. (3.5)

Now we will prove the following properties for such
operators:

1. M, @) e B(rc).
Indeed,

(]lfc'—(p) “1
K —2

(I,,—® e GB(rc), K cC(r0),

hence X (I,,— @)k — 2)-1 (1, ,— @) is closed, but since
its domain is 7c, then it is a bounded operator as well.

Therefore also M, (z) € B(rc).
2. 9{z) is a closable operator.

In fact, v 2DON(z)) = DK ) then M (z) is densely
defined.

So M*(z) exists and [MH(z2)],
{3.1) and 1. 1.

Hence by Lemma A3 (see Appendix) 9 (z) is closable
vz, Imz =0.

> MA{z), by (2.11),

c

3. vz, Imz = 0,we have
RNy (2) — 6 = [z +ME]E —— . (3.6)
K—z

Proof: If C € D(XK'), one gets

(K — 2)C = (K — 2)C + (@ K + KO — PKP)C.

Hence
Al (K —z2)C=C + Al (® XK + KO — OKP)C
K —z K-z

and setting C’ = ()K — 2)C one has

Al 1 c’ o+ Al
XK —z K—2z

X (PHK +>1<0>-<P>K(P)——1~c’ (3.7
K —2z

Since each of the three terms of the last equation be-
longs to D(XK), we have

1

@m(ﬂn—@)m — ¢
1 .
=<P}K(ln—(p);{< — C'
+®XKdA,, — @) N (I,, — @K . N
K —z X —z
1 1 ,
+@K{E, , — @) = OH et C
and since
CxR(,., — @) 1 =@ + 20 1 — @XKE 1
K—z K—=z XK—z
and
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oK, ~ ) =1 — ex —L

K—z K —2z

c'=0

pecause (I,, — ®) commutes with 1/(k — z), one has
at last

CI

[01,(z) — ®]C = [z + M (2)]®

. b
K—z

v C' e RUK — z2).

By 1.4, (K’ — 2) = 7¢, and by 3, (z) € B(7c) it follows

N, () — @ =[z +ME)NC[1/(x — 2)].

Noting that @-§<C§ if @ is a closable and § a bounded
operator, it follows the statement.

4. If Imz = 0 one has

&EN(2) + 2) = 7c. (3.8)
In fact, using (3. 6) one easily gets

1

—Z

®=—(z + ME)E ®.

Hence
,.—@®)=E+MA,,—C)1/z

and

1, =1,,—@®+0

TC T

~ (2 +WE)E ® +(z +TENA,, — ML,
K— z z

then it follows (3.8).

5. (@) Imz>0,Ima>0=>3 (x +IM(z))?
(b) Imz<0,Imrx<0=>3 (A +M(z))-1

Proof:

(a) Let us consider the operator @M (z). iM(z) is a
densely defined operator in 7¢, hence, by Lemma A. 4
(see Appendix), it can be considered as a densely de-
fined operator in oc.

(3.9)

iM(z) is a dissipative operator in oc¢;in fact, by L. 1,
{2.11),and (3.1) we have vC € DON(2)) = DOKE)

Re (C,iM(z)C) = —Im 2z

L —@))K(PC“2<0
%ol 50

i (z) as operator defined in oc is closable, and its
closure {9*(z) is a dissipative operator (Ref.15,
Lemma 3.3,3.4).16

Then it exists (g + i9W(2))-1 vy, Rep <0 (Ref.15,
Lemma 3.1),and {u + iM*(2))-2 D {u + iM(z)-1
(Lemma A5 in Appendix) —where D is the ordinary
relation of containment between operators defined in
oc.

Thus nul[p + {9M(z)] = 0

From this equation it follows that (u + i9M(z))-1 exists
and that generally it is an unbounded operator defined
in Tc.

We could easily proove that (1 + i3 (z))-1 as operator
defined in oc is on the contrary bounded.

{b) The proof is exactly the same as the former one,
where in this case — 9N (z) is a dissipative operator
in oc.
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6. Vaz,

—J_—) e B(rc)

z +M(z

Imz # O one has

(3.10)

The proof follows immediately from (3. 8), (3.9) and
from the fact that {1/[z + ()]} € €(7¢).

7. vz,
1
z +9z)

Im z # 0 one has

1
K-z

(N ) —®)=¢ (3.11)

The equation follows immediately from (3.6) and (3.8).
As a consequence of (3.11) we have

— 1l -t (3.117)
z + M (z) K—z

— L q@w=cL—q, -0 (3.117)
z + 9N (z) K —z

8. DEW(z)) is independent of z and
DO (2)) =: {C € 7c|®C € CD(xK)}.
Proof: Let = =: {C € 7¢ |®C € ®PD(K)}.
By (3.11') and ON(z)® — ®M (z)) < 0 it follows that

_1r 1
z +‘JT((Z) K —2z
Hence

C e (R(

®.

s )

= PCc & <—@—1~0>>c <R<6> 1 > = PDCK).
K z K-z

Thus
Cc DON(z)) => C e Z.

On the other hand, by (3.11) it follows that
Cc T =>0Cc DM(z)). Besides,vAc 7¢(, , — ®A
c DON(z)) and M(z) 1,, —®P)A =0. ThenC c Z =>C

c DON(z)) and M(z)C = M(z)®C.
Therefore, DEN(z)) = .

9. ,(2) is a closable operator, and (N, (z)) is in-
dependent of z.

In fact, [91{(2) ], 2 M,(z) and [N;* )], is closed
by Lemma A2 in Appendix.

The second statement is an immediate consequence
of the equation

5, () = [11 =20, —0) —Ai-] %, ().
K—2Z

10, vz, Imz = 0 one has
1
Ire — @) = (=0 =2 (0, =0
K —z K—=z
e 1
— N, (z) ——— [N, (z) A, — ®) — @].
26 T P G l5.12)
Proof: By (3.7) one gets ¥ C! € R’ — 2)
1 1 \
o= O, O = Qe m g
1 1
- [(]]Tcﬁ @)7?{—2 (ﬁrc’_ (P)}K(P] XK — 2z ct
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and taking into account (3.4) and (3.11), we have
1
x—z

X [m‘l(z)(lrc -

ct — 312(2)__1.__

1
1l —0)——C=Q0_,.— ¢ —
O )m——z O ) z + M (z)

®) — e|c1.

Since (1, — @) [ L = 1 jl € ®(7c), we havealso
K—z K -2
1
I)'Lz(z) :-}-_f)':.n—(;) [’Jll(z) et (P] < (B(TC).
Hence
1
f)'lz(z) Z—I—S_Tl—(;—) [3’61(2) — @] e ®B(7c) (3.13)

and (3.12) holds.

11. Taking into account the analyticity of the resolvent
operator, in the two half-planes Imz > 0 and Imz < 0
we have:

(a) 91,(z) is a holomorphic operator-valued function.
This is an immediate consequence of the equation

Ny (2) = Ny (21) + (2 — 290y (21) =
K—z

(b) VA< DEKE) = D(N,(2)) = DOW(2)), N,(z)A and
IM(z)A are holomorphic vector-valued functions. The

holomorphism of M(z)A follows immediately from the
equation

drc— ©@).

Mlz) =M(z1) + (2 ~— 21) Ny (2) Ny (2).

{c) The following operator-valued functions are
holomorphic:

1 1
— O, = 4 (2),
z +M(z) z + M(z) 1(2)
1
Ta(e) z +M(z) Lale) 2) z +9M(z)

By (3.10) and (3. 13) it follows that all these operators
belongs to ®(rc).

The statement then follows from (3.11°), (3.11"), and
(3.12).

Now we put

¢ (t) = CW(t) = EU()W(0)
and
I =0, —Owk=~10,—->)u@wo),

where W(0) is the statistical operator at time ¢ = 0.

By (2.7) we have the following equations for ¢(t} and
T(t):

1 1

) = lim — = [*aqw w”.edz exp (—izt) ® w(
¢ lim g fydw [, 42 exp( S ),
(3.14)
T
I(t) = glir:xo o7 fo aw f_wu_edz
X exp(—izt) (1, — ®) ——— W(0). (3.15)
K —z
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Taking into account Eq. (3.11) and (3.12) we have

11 weic
t) = lim — &+ | faw dz
o) R AL

£ oo Y- wtie

, 1
X exp(—izt) —z =T [@ —;,(z)]w(), (3.16)
11 g, pweic
r(t) = gl—lor:cl % «—ﬁ_ f dw ‘f;wﬂ‘edz

0
x exp (—izf) ((nrc — 0 (,.— ®— Tyl

-

1
x —t (0., ) — 0@ >W(0). (3.17)
2 +m(z) [ 1 TC ]
With the simplifying condition
¢(0) = eW(0) = w(0), (3.18)
one gets the following equations:
1 1 3 wric
¢(t) = 2—75 g}f:i Z— fO dw f-wriedz
. 1
X exp(—izt) ——— ¢(0) 3.19)
P z +M(z) ¢, (
1 . 1 3 wtie
() =gy lim - fodw [ dz
. =7 1
X exp(—izt) (—:ﬂ (&) ——=—— > 0. .20
LA + M (2) ¢

We remark that, by (2.8), if W(0) € D(K) one may re-
place lim (1/£)(1/277) fogdw“-with (1/27i) lim ---
£ o0 ¢

w ok
in all Eqgs. (3. 14)-(3. 20).

Equation (3.19) is a closed time evolution equation

for ¢(2).

It is easy to check that ¢(#) obeys the so called
generalized master equation.

From a more general point of view Eqgs. (3.16),
(3.17) supply a starting point to develope the theory of
independent subdynamics in the formalism of the pair
of spaces (7c,B).
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APPENDIX: REMARKS ON THE TRACE~CLASS
OPERATORS

Let $ be a Hilbert space. 7c is the linear space of all
linear bounded operators defined on $ such that
tr ((A7A)1/2) < w0,

Putting vA € TCHAHl =: tr ((A*A)1/2), 7¢ becomes
a Banach space (Ref. 17, 3, Theorem).

Let oc be the Hilbert space of all Hilbert-Schmidt
operators defined on $.

VA e 7c we have A ¢ oc and J|All < ] All, < |All, if
All, is the norm in oc (Ref. 17, 3., Theorem 4).

Let C be the linear space of all completely continuous
operators on 9.
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C is a closed linear manifold of B = ®(H);so it is a
Banach space if the bound of an operator stands for its
norm.

The following statements are true (Ref.17, Chap.4):

(1) I 9 is infinite dimensional, then C is not the con-
jugate space of any Banach space.

(2) The dual space of C is 7c.
Every bounded functional on C may be represented by

L(B) =tr(4*B), B=C,
where A is a suitable “trace-class” operator.

(3) The dual space of 7c is 5.
Every bounded functional on 7¢ may be represented by

LW) =tr (B'W), We 7c,

where B is a siutable bounded operator of 1.

(4) The dual space of i is 7¢ @ C*, that is every
bounded linear functional § on 8 may be represented in
one and only one way in the form § = ¥, + ¥, where
§,€ 7cand F, = C+. Moreover, |F! = I'5, 1 + ! 3,].

Some other remarks on the 7¢ space:
{(a) if © is a separable Hilbert space, 7¢ is a separable
Banach space.
Indeed, let ¢ & ¥ (¢, < D) be the operator defined
as
(e Wf = (¥, vf=H.
Ve,V -9 wehave ¢ @ ¢ ¢ TC.

I {«,| is a countable set of vectors which is dense in 1,
one can easily see that the set {u; © @, } is dense in the
set of all ¢ w Y in the sense of the topology of Tc. The
statement follows immediately from the fact that the
linear manifold spanned by the set of all ¢ ® ¥ is dense
in 7c.

(b) 7c is the linear manifold in B spanned by the statis-
tical operators.

In fact, every “trace-class” operator is a linear com-
bination of two self-adjoint operators which belong to
Tc, everyone of which in turn is the difference of two
positive selfadjoint “trace-class” operators.

Finally, for every self-adjoint, positive, trace-class
operator D we can obviously write D = tr s (D/tr D) and
D/tr D is a statistical operator.

We now prove some useful lemmas:

Lemwma Al:
(a) §<4B = §  1c « TC,
b) S<IB = S oc < oc,
() S<loc =8 7cqTC

We will prove (a) only, the other ones can be proved in
the same way:

AYcspyre,Ae tclA, — All; 2 0

n n 1

A, —All = 4, —AY, >0
=>Ac S=>Ac S TC.

== AR 5
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Let § a linear operator defined in B. We will denote
with § __ the restriction of J to the linear manifold
D(F, )= {4lA = D(F) 0 1¢, FA € T¢!. We note that
D(F .. may become {0} and that ¥ « ® (8) does not
imply §_, ¢ ®(7c).

Lewmma A2
G e els) = %, ¢ Cre).

Proof: Let{A | D(F ) and 4, B e 7c.
Assume besides that |4, — All;, »0and (F__A — Bl
->0. Then I!A, — Al < }A — Al; - 0 and ¥, .4, — Bl
< %, .4, — Bl — 0;therefore, 4 = D(F) n ¢ and
5A =B thus Ao D(F_)and & A =B.

Lemma A3: Assume ¥ is a closable operator in

2, &, . is a closable operator as well.

Proof:

T ()= F .o (T, € C(r),

thus § . canbe extended to a closed operator, then it
is closable.

Lemma A4: Let R be a linear manifold dense in
Tc, then R is also a linear manifold dense in oc.

Proof: Let us denote the closure of R in oc with R™*

VA ¢ t¢, A} ¢ R such that 1A, —Al') 0.
But 1A, —Al'y = JA — All; —0thus A © R* and then

R* 5 71cand R* D 7¢* = oc that is R* = oc.

Corvollarv: Let T be an operator densely defined in
Tc, then § is also densely defined in oc.

Lenuna AS5: Let § be a closable operator defined
in 7¢ and § be its closure. If § considered as an opera-
tor defined in oc is closable, then it holds that * 2§,
where §* is the closure of § considered as operator
defined in oc¢ and the relation O is the usual one between
operators defined in oc.

Proof: Let us suppose that (g) < $(9).

Then
a4, < D(F)
with
A A
)= Gl o
but
A, A A, A e
gAVL TA° 2 = ﬂAn T8 1 )0,
thus
A _
B O S (S *))
and then
G(F*) > G(§).
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The field equations of a fermion field with a scalar self-interaction are studied in a three- and
four-dimensional space—-time. The Faedo-Galerkin method is used to prove the existence of a
sequence of approximated solutions which converges in a suitable topology. In a different topology,
the existence and uniqueness of a local solution is proved using the contraction principle.

INTRODUCTION

In the past few years, very important results have
been obtained in constructive Hamiltonian field theory:
Following mainly the path proposed in the middle six-
ties by Wightman, ! nontrivial quantum fields have been
proved to exist, satisfying the Wightman axioms.?

Another approach, which consists in studying the field
partial differential equations, is possible; indeed, there
is no a priovi reason to prefer the Hamiltonian approach
to the one through field equations. However, a very good
practical reason for doing so becomes apparent if we
think of the well-known Wightman's theorem,3 according
to which in a local quantum field theory with a unique
vacuum and positive nontrivial spectrum all bounded
operator fields (i.e., functions) are trivial—or, inform-
ally stated, “fields must be distributions.” As a con-
sequence, in the approach through field equations we are
concerned with the problem of defining, and of dealing
with, nonlinear functions of distributions, appearing as
nonlinear terms in the field equations. This problem
wasg studied by Segal,? who obtained remarkable re-
sults.

A different way of overcoming this difficulty could
consist in developing the following program:

(i) writing down and giving existence and unique~
ness theorems for the Cauchy problem relative to
field differential equations, where the field is taken
to be an operator-valued function;

(ii) letting the Cauchy datum converge to a distri-
bution, and proving that the solution correspon-
dingly converges to a distribution, to be taken as
the field of physical interest.

This program has been recently put forward by
Dell'Antonio.® Independently, Salusti and the present
author were able to prove a global existence and
uniqueness theorem for the field equations of the Thir-
ring and Federbush models.®

In the following (as it was the case in Ref, 6) we shall
be concerned only with item (i} of the above program,
or, in other words, we shall always be dealing with
operator—valued funciions; in particular, the solutions
of the field equations we will study are operator-
valued functions. We shall speak sometimes of “fields,”
but it should be clear from the outset that, according
to the above remarks, this term is not to be taken in
the usual sense in the present context.

Some comments are in order. To our knowledge, no
rigorous results are known on the link between the
Hamiltonian and the field differential equations
approach. We remark that, in item (i) of the above
program, the solution of the field equation is not re-
quested to have physical properties (causality, for
instance); instead, these properties should be recovered
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after proving the existence of the limiting distribution?
[item (ii)]. Similarly, the solution is not ¢ priori re-
quested to have definite covariance properties; instead,
one asks under which conditions the nonlinear semi-
group obtained solving the field equations would give
rise to the time evolution implemented by a (approxi-
mate) Hamiltonian.” In a sense, one might expect to
obtain via the above program a more general class of
solutions than the ones given by the Hamiltonian forma-
lism; these (the only ones of physical interest) could

be singled out imposing the physical requirements.

To summarize, it seems to be interesting to study
field differential equations (which at the present stage
enter in quantum field theory only as identities satis-
fied a posteriori by the fields constructed via the
Hamiltonian formalism). The present paper is con-
cerned with item (i) in a particular nontrivial model,
with the purpose of testing the feasibility of the above
program,

1. STATEMENT OF THE PROBLEM AND RESULTS

In the present note we are concerned with the follow-
ing Cauchy problem in three- and four-dimensional
space—time:

e, + my + VIV = o,
(1. 1)
Y(0, %) = wol®).

The above problem describes, when ¢ = 0, a fer-
mion field with a scalar self-interaction, and seems to
be the most straightforward generalization of Thirring's
model to a higher number of space~-time dimensions.
The quantities ¥/(?, X}, ¢ (¢, x) are functions which take
values in B(4C), the algebra of linear bounded operators
on the Hilbert space IC;m, & are real constants. As in
Ref. 6, no assumption is made about commutation or anti-
commutation properties, or causality. By adopting a
particular representation of the Dirac matrices y#, the
problem (1. 1) can be rewritten in explicit form as in
Egs. (4. 2) (four-dimensional case) and (4. 12) (three-
dimensional case).

In the present case, the earlier adopted semigroup
methods® turn out to be not useful; thus we develop a
modified version of the Faedo~Galerkin method par-
ticularly fitted to our problem, or we make use of the
Banach fixed point principle. In this way we are able to
prove the existence of a (nonunique) sequence of global
approximated solutions, converging in a sense to be
specified below, or, in a different Banach space, the
existence of a unique local solution.

In Sec. 2 we give a short outline of the Faedo—Galer-
kin method, as well as the Banach fixed point principle.
In Sec. 3 we introduce some function spaces and state
their principal properties. In Sec. 4 the Faedo-Galer-
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kin method is applied to prove the existence of the
above referred sequence of approximate solutions. In
Sec. 5 we use Banach's fixed point principle and some
semigroup techniques to prove the existence of a local
unique solution. Section 6 is devoted to concluding re-
marks.

2. MATHEMATICAL TOOLS

For convenience of the reader we give a short account
of the main mathematical techniques which will be used
in what follows. We first review briefly the Faedo~
Galerkin method, stressing particularly its relevance for
the theory of abstract evolution equations. In this res-
pect see Refs. 8, 9.

Let X denote a separable normed space with the basis
{x].}; denoting by X, C X a subspace spanned by the vec-
tors Xy, Xs, - - - » X, We can state the Faedo~Galerkin
method as follows. Suppose we are interested in the
equation F(x) = 0, where F: X - X’ is a mapping from
X into the dual space X': An approximate solution is
found in the form

By

xn = }anjxj,

-

the coefficients ¢, ; satisfying the system of equations

»
<F<21;] anjx])’xz): 0, i=1,...,n (2.1)

In general, {y,x) is the value of the linear functional
y € X' on the vector x = X,

The system (2. 1) is equivalent to the equation

PIF(Px)= 0, (2.2)
where P, is a projector from X to X, and P} is the con-
jugate operator of F,. The solutions of Eq.(2.2) are
called Faedo-Galerkin approximations. In the particu-
lar case F: X — X, the Faedo-Galerkin approximations
are solutions of the equation F(x) = 0 restricted to the
subspace X, , i.e.,

P,F(Px)=0, (2.3)
This is the case in which we will be interested in the
following.

The foregoing frame turns out to be relevant to state
existence theorems for partial differential equations.
Indeed, if Faedo~Galerkin approximations for such
equations exist, we have a sequence of “approximate”
solutions: We can ask whether this sequence conver-
ges to a vector of X, which is an actual solution of the
given equation. This point can be investigated in several
ways, mainly by compactness or monotonicity methods.
Typically, compactness proofs are given in three steps:

(i) existence of a sequence {»,} of Faedo—Galerkin
approximations;

(ii) a priori estimate, uniform with respect to #, show-
ing that the Faedo—Galerkin approximations belong to
a bounded set of X;

(111) using compactness theorems to extract a converging
subsequence {an }, whose limiting point is proved to be

a solution of the given equation.

We remark that compactness proofs say nothing
about the uniqueness of the solution, In Sec. 4, our treat-
ment of the problem will follow the foregoing three
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steps of the compactness methods; as for (i), however,
there are some nontrivial differences which will be
discussed in Sec. 6.

An independent approach is given by the well-known
contraction principle. Let X be a complete metric
space, §2 a closed set in X, P an operation transforming
£ in itself, Let, moreover, P be a contraction mapping,
i.e.,

P(P(x), P(x")) = aplx,x"), x,x'c8, (2.4)
where p(-, +) denotes the metric in X,and @ < lis a
real constant independent of x and x’, Then the follow-
ing theorem holds.

Theorem 2.1: ¥ P is a contraction mapping, a
unique solution x* of the equation ¥ = P(x) exists in .

In other words, if P is a contraction, a unique fixed
point x* of P exists, The contraction principle is often
referred to also as Banach fixed point principle; other
fixed point principles exist.10

3. FUNCTION SPACES

Let B(X) denote the algebra of all bounded operator
on the Hilbert space ¥, We consider the linear space
CT(R7; B(X)), i.e., the linear space of all infinitely
differentiable functions with compact support in R”
which take values in B(¥). For any f € CF(R”; B(X)),
a real-valued function | f|, is defined by:

e = 1S, avr @2, (3.1)

Sf'(x) denoting the adjoint of the operator f{x) and - ||
the norm in B(J0).

We want to prove that |/|, is a norm in C3(R; B(%0));
for this purpose the following lemma is useful.

Lemma 3.1: Let X be a complex linear space. Let
us consider an application [+, - ]: X XX — B(X) which
satisfies the following conditions:

(1) [x,3] = [y, ]

(2) [x,x] = 0

3)[x,x] =0 ifand only if ¥ = 0;

(4) [M + wy,z] = Ax, 2] + pv, 2], A pecC.
Then the following inequality holds:

s,y ] + [y, = lifx, %] 172l[y,y]i /2. (3.2)

Proof: For any A, p €R, o € JC, we have
A2z, x)a, @) + v, v] + [v,xlfe, 6) + p2([y, v]o, @)
2 0,(-,-) denoting the scalar product in . It follows
that

H{x,y] + [v,x]}a, @) < (%, %], ) V2(y,y ], a)1/2

whence the result, 3 {{x,y] + [v,x]} being a bounded
self-adjoint operator by hypothesis. ]

Proposition 3.1: CF(R";B(40) is a normed linear
space with the norm | f |y.

Proof: To prove the triangular inequality, it
suffices to remark that the application of
C(R?; B(3)) X CF(R?; B(3)) in B(¥) defined by
(gl = J., dxfixg ) (3.3)
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satisfies the hypothesis of Lemma 3.1. The other pro-
perties of the norm are trivially verified. -

Definition: The completion of Cy(R?; B(%)) in the
norm (3.1) is a Banach space which w111 be denoted as
L2(R7; B(30)).

Obviously, L2(R”; B(3C)) contains the Hilbert space
L2(R*) % 1 of complex-valued functions in R%. It is
worth noticing that, besides L2(R”; B(3C)), another “L?2
space” for operator-valued functions in R” can be de-
fined as follows:

L2 B(30) = {f: ®* = B(3e); [, dx [ 7(x)]12 <o},

This Banach space might seem the most natural exten-
sion of the usual definition to operator-valued functions.
However, the space LZ(R7; B(3)} furns out o be more
convenient, mainly because the application (3. 3)~which
has the formal properties of an “operator-valued scalar
product”’—allows us to derive easily a priori estimates.

Proposition 3.2: L2(R7; B(3)) & L2(R”; B(&)).

We recall the definition of the following Banach spaces:
Lerr; B(3) = {f:r ~> B [, dxllftx)le <,

Flp = [, axlile,  1sp <=

b

HYRS; B(IO) = | £ 187 = BK); é” o e | 2] | < w§

Ul%,zzék j dx’l aj(x) 51
1 I dxk

For p = 2 we have the already mentioned space

L2(R7; B(3)). In the same way as L2(Rz; B(10)), we
could define the Banach spaces L& (R, B(30)) (1 =p <
) and HY{(R7; B(3)).

As already remarked, L2{(R”; B(X)) contains the Hil-
bert space L2(R") ® 1 of complex-valued functions in
R#. Let us choose in this space a complete orthonormal
system, e.g., the Chebyshev—Hermite functions: it is
easily seen that linear combinations of these functions
with operatorial coefficients are dense in L2(R7?; B{J0)).

Indeed, infinitely differentiable functions with compact
support are dense in LZ(R*; B(¢)) (this follows from the
same definition of L2{R"; B(#)), and polynomials with
operational coefficients are dense in CF(R”; B(5)) in
the uniform norm, thus in L2 normn.

A remarkable property of L2{(R7; B(J®)) is that the
Plancherel theorem holds true. For any f € L1(R”;
B(J0)) let us define the Fourier transform f in the usual
way:

J& = @ne [ dreticiay (), (3.4)
where

Then we have the following:

R Theorem 3.1: With each j ¢ L2(R”; B(1)) a function
F < L2(R”; B(JC)) can be associated in such a way that:
@) Sle= 11 (3.5)

(i1) if f € LY(R"; B(I))
transform (3.4) of f.

¢ L2(R*; B(%), f is the Fourier
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Proof: The proof will follow in a standard way as
soon as we prove Eq. (3. 5) for the dense set given by
linear combinations with operational coefficients of
Chebyshev—-Hermite functions, i.e.,

flx) = 2, Tux), T; < B(3).

For this purpose it suffices to notice that:

_!.;.-in ax i) flx) = Zn}i'j TT, f_” daxu(x Jufx)

~

ZZ) TT, f, dxité 000

= J., xS i,

where use has been made of the Parseval's relation,
Taking the operator norm of both sides we get the
result, |

We are now in position to introduce another Banach
space which turns out to be useful. Let us consider the
following linear space:

S(R7; B(30) = {7207 > B(3); S e LYR7 B (3.6)

S(R”; B(30)) is a normed linear space with respect to
the norm:

',f 11' A l,f\(l .
Definition: The completion of S{k”; B(#0)) in the

norm (3.7) is a Banach space, which will be denoted as
Ll(R" B(30)).

(3.7)

Proposition 3.3: LYR”; B(%)) is an algebra with
respect to the usual product.

Proof: LYR*; B(30)) is a (noncommutative) algebra
with respect to the convolution, so we have
]fgll,‘\:lfgh: |1 |f,1 |g|1~— lf'lAlgllA n
In the following we will be dealing with spinorsin a
four-dimensional (three-dimensional) space~-time,
which can be viewed as functions from [o, T] X R3
([o, TT X R2) in &, B(3) @7, B(JC)). Then it is useful
to introduce in a general way the Banach spaces
L3(re; &, B(X)), with norm defined

Wl = hEk f dx 5 (%) Y ( x)[“/2

and Li(R"; @]%, B(30)), whose norm is

IIMLA :ilk 1\2;]@!1

Similar definitions hold for the spaces L2(R”;®7, B(1))
and HY{R"; =", B(5)). We will also be dealing w1th the
Banach spaces C(lo, T} X), Lé{[o, T|; X) (1 =p =x),
where X is a Banach space and the norms are defined
in the usual way.

4. COMPACTNESS METHOD

We first study the problem (1. 1) in a four-dimen-
sional space~time, The three~dimensional case, which
can be treated in a similar way, will be considered
afterwards.

After multiplication by — iy 9, the Cauchy problem
(1.1) can be rewritten as
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&agl +Ek at aw + imy % — igl¥hy oY = — iy 0%,
Y

at 1 (4.1)

Yo, x) = Yolx).

Here ¢, ¢ are four component spinors, i.e., functions

from [0, T] X R3 me) 1 B(%), and o = ak* denote the
three Dirac space matrlces. By adopting a particular
representation of the 4# matrices,11 the problem can
be written in the following explicit form:

i) d a 0
121 4 ¥y — Wy + L2
ot ox oy 0z
+ imyy, — ig(YY + i,

- §V§W3 - 1%;\!/4)‘!/1 = - i@p

Wy By B DY

— +
ot ox oy 0z

+ imd’g - ig(W{ll/l + WéWZ - %?#3 - M%)Wz = — i@y,

Wy B P 4.2
ot oax 3y 0z
—imy + igWiy + Ve, — Wiy — Y W, = gy,
A WL c WL
ot bx Jy 0z
— iy + 7g(¢/1+d/1 + ‘pélpz — gy — ‘Mﬁzﬁ;)\b‘; = iqy,
¥y ¥oy
V. ¥
2 (0,x) = 02 (x).
\1/3 \(/03
Y, Voq

This is the Cauchy problem for a system of nonlinear
partial differential equations in normal form. We re-
mark that, in deriving the foregoing form of the problem,
anticommutation relations for the fields have never

been introduced. According to the general discussion of
Sec, 2, we need three preliminary steps to prove the
main theorem of this section. We assume that the
Cauchy data y,; (i =1,...,4) belong to

L2(R3;04 B(30).

(i) As we remarked already, the Hilbert space
L2(R3) of complex-valued functions is contained in
L2(R3; B(%0)).

Let us take a basis {x;} in L2(R3), whose elements
belong to H1(R3) N L4(R3) (e.g,, we can take the Cheby-
shev-Hermite functions), and look for approximated
solutions of the problem (4. 2) of the following form:

wi

it %) = Zl TI(Z: (H)x,x),
1

T4

tm

{4.3)

o, T} »B(3), i=1,...,4.

In other words, we take linear combinations of complex~
valued functions with time dependent operator-valued
coefficients T,‘Q,(- ); these coefficients are to be deter-
mined from the conditions:

) d/ (m) 3 ) w(m)
[*f’ ot ]+Zk[ ( o i+l Gowem)]

_ wmrw))( Ow"’”)-] =— X, (0],
i=1,

V4, J=1,...,m, (4.4)
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where [+, -] is the application (3. 3) {for n = 3). Then
we have, for any m, a system of 4m ordinary first-order
dlfferenual equatlons in normal form for the 4m un-
knowns T  (+), to be studied with the Cauchy datum:

d/i(m) (0, x) = Wo(:n) (x)’

m
‘f/o(:n) (x} = Z:g Vz(z XZ(X),

'El V()

(4. 5)
1* —0 whenm —o,

It is easily seen that the nonlinear terms in Egs. (4. 4)
are locally Lipschitz continuous in the operatorial
norm, thus in an interval [o, £, } a unique solution of the
problem (4. 4), (4. 5) exists.

(ii) In the following we will assume that ¢ belongs
to Li(Jo, T]; LZ2(R3;@®#.,B(X)). Let us consider in the
system (4. 4) the equation of indices (¢, 7): Multiplying
by T(‘)*(a‘) from left and summing over both indices, we
obtam in compact form

[l//(m) a\p(m)] + 233 [W”’) at aw ]+ im [ ), Y om)]
— g, (t’/(m’wm’w("”] = —i[y™, o],
where we have posed ¥ = ¥*,0 and
(o, ¥]= él[‘ﬂu ¥l

Taking the adjoint equation and summing, we obtain
simply:
? e —
57 [, ) = — i{[ Y, o] — [, Pim]},
In the particular case ¢ = 0, (4.6) expresses the con-

servation of the fotal charge of the field. Taking the
operatorial norm and using (3. 2), we get

(4.6)

[d/(m) l[/(m)] I =< !I - w(m) d/(m) '< 2l ;J/(m) w(m]ul/z

X e, ojliv/2,
or

— ltl/(’")(t)l* lo®) s

It follows that
gy = c + deslqo(s)l*. 4.7

The foregoing inequality shows that ¢, = T; moreover,
when letting m go to infinity, ¢/ belongs to a bounded
set in L*([o, T1; L3 (R3; @1 B(1))).

(iii)  Let {e,} be a complete orthonormal system
in the Hilbert space 3. We consider the set of operator-
valued functions in R” defined as follows:

:%f:R” = & B (1S e e < oo}, (4.8)
with the obvious position: ’
= lei [/8:) = 2;/; fRn

[/,&] dif ;" (x)g ().

Lemma 4.1: Q(R7; 07"
space with the norm

If 'Xz = ?k({f,f]ek, e)V/2,

1 B(30) is a normed linear

(4.9)
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Proof: 1t suffices to prove the triangular inequality.
Far any f, g € QR”; @, B(3C)) we have

(IS +8.0 +8leg, e
=(/,1le W)+ (g.8le, &) + 15, 8] + [g,/1}es € |
= (i /les 0) + (g, 8les, ep) + 207, 7]e,, €,)1/2,
whence
(f +8.5 +glep, edV2 < ({f,fle,, ep /2 + ((g,8]e,, )72,

The result follows immediately. L

Definition: The completion of AR";7%, B(i)) in
the norm (4. 9) is a Banach space which will be denoted
as X, (R"; o, B(X0)).

Theorem 4.1: LZR»;®o7, B(3)) is embedded in the
dual space Xo(R";®7% B(J0)) of X,(R™; & B(30)).

Proof: For any f ¢ LER";0% B(X)),g € X,(R7;
@7 B(%C)}, we define the bilinear form

<fyg>= %zlzk({{f’g]+ [g’f]}ekrekr)- (4-10)
The result follows as soon as we prove that
Kol =171k lgly . (4.11)

In fact we have
f,el = %@;e (f,&ler, ex) + (8,/)er, €)
= Zl;k ([fsf]ek: ek)l/z ([g,g]ek, ek)l/z

= “[f;f]“l/zzk ([ggg]ek)ek)l/z = 'f{* lg'Xz’
1

where use was made of the self-adjointness and positivity
Of [f’f]'

Then every f € LZ(R*;@%, B(¥)) defines a con-
tinuous linear functional f on X,(R* ; &, B(3C)) in the
following way:

@) = {f,8),

We can now state the following theorem,

|7l = 1 11a . .

Theorem 4.3: Let be given
2 4
@ Ll([o, T); L? (R3; i@lB(JC)»,
2 4
Vo € L (R3; ie:alB(:ec)) .

In ([0, T]; X4(R3;® %, B(3C))) there exists a sequence
of approximated solutions of the problem (4, 2), converg-
ing in the weak-x topology.

Proof: According to a theorem of Alaoglu,12 the
closed unit sphere of the dual space of a Banach space
is compact in the weak-x topology. According to theorem
4.2, L=(lo, T]; LZ(R3;@}., B(30))) is embedded in
L([o, T1; X4 (R3;@;‘:13(3<'5)), i.e., in the dual space of the
Banach space Li{[o, T}; X, (R3; @21, B(J))). On the
other hand, inequality (4.9) shows that all the approxi-
mated solutions {( of the problem (4. 2) are contained
in a bounded set of L*([o, T]; LA(R3;®}_; B(30))), thus in
a bounded set of L*([o, T); X3(R3;®%., B(1))). Then, by
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Alaoglu's theorem, in L*([o, T); X5(R3; 82, B(1))) a
subsequence Y (me) of approximated solutions exists, con-
verging in the weak- s topology. ]

Similar results hold when studying the Cauchy prob-
lem (1. 1) in a three-dimensional space—time. In this
case it is possible to choose as a representation for
the y# (4 = 1, 2, 3) the Pauli matrices, 11 so that the
problem can be rewritten in the following way:

Y, 8y, oY, o . '
il —a-y—? + imyy — @Y — W) ¥y = — ey,
W, By, Ay, o ) (4.12)
at -t ax - ay - lmwz + lg(w]_wl - lpzu/z)‘r’/z = Z(pZ’

Again, no anticommutation relations have been assumed.

It is easily seen that the Faedo~Galerkin method can
be applied to the problem (4. 12) in the same way as for
the four-dimensional case, Then we state without proof
the following theorem, analogous to Theorem 4. 2.

Theorem 4.3: Let be given

2
@< L1<[o, T]; L2 (R2; icng(JC))),
2 2. 2
Yo € L7 (R ; i@lB(JC)>.

In L= ([0, T]; X5(R2;82_) B())) there exists a sequence
of approximated solutions of the problem (4. 12), con-
verging in the weak-+ topology.

5. LOCAL SOLUTION

In this section we prove the existence and unique-
ness of a local solution of the Cauchy probiems (1. 1).

For this purpose we remark that the problem [for
instance written as in Eq. (4. 2)] is of the form

du

, + Lu+ Tu=f, u(0)=u,, (5.1)

where u,J are functions defined on [0, T'] taking values
in a Banach space X, L is a linear operator in X, T a non-
linear operator in the same space, and u, belongs to X.

Let us consider the linear operator L in
LYR3; @}, B(5)):

. d ] .9
im o — —_— i
9z ax ay
. d .0 d
o im — 4+ i -
ox dy 0z
L=
9 ~a———z-a— —1im o
a9z ax dy
j_+ xa 9 0 —im
ox ay 0z
(5.2

Lemma 5.1: (i) L is a closed operator with dense
domain; (ii) the resolvent (A\] — L)1, x € R,, exists such
that
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f(Af — LY = 3/a (5. 3)

|- | denoting the operatorial norm in L1(R3;a%.; B(%)).
Proof: The proof of (i) is trivial. As for (ii) we

have to study the following system of partial differen-
tial equations:

i, — ¥ (%_ %) -
= mhvy 02 ox oy R
) oYy .a%) Wy
o imve (S 5) + 5 = e )
(5.4
Y, [, aw2>
—a G i) e = e,

0 0
_<_ll./l+z'%> +£§+(}\+jm)\p4=(p4,

ox ay 9z

where ¢ € D, ¢ ¢ LY(R3;&%; B(%)) and x € R,. Taking
the Fourier transform of both sides, we get

A2+ w2(§) 1{>\(ﬂ1 + ng‘ﬂa + (i, + &) (04}’

— iE3@4ly

‘é) €->

( I

[)\2 + w2(&) T 1{?\(p2 + (& — 2)@3
=[r2 + w2 3 1{Z§3¢1 + (i§ + ¢ )(Pz + >‘(/)3}a
= I

A2+ W2(E)] T — £5)P1 — 3Py + XD 4},

where w() = (m2 + £ + £3 + §2)1/2 This proves the
existence of a unique solutlon of the system (5. 4);
moreover, from (5. 5) we easily obtain

Wiia=@/Nlel; - (5.6)

This completes the proof. n

Lemma 5.2: The nonlinear operator T in
LY(w3; o, B(1e),

(%) — [¥¥ + VoW, — Yas — Wl g
T L — g — [¥i¥y + ¥, — ‘1’5‘1’3 - ‘»"4‘”4]’\"2
V3 Wiy + by — gl — ad, ’

¥y (Wi + WWy — gy — VY

(5.7

is locally Lipschitz continuous.

Proof: According to Proposition 3. 3, L1(R3;
©4, B(J)) is an algebra with respect to the usual pro-
duct, so that T is well defined. We have to prove that

4
@; I[Widy + YaWg — W3y — Wil ¥s

—[oier + @302 — 9303 — Qi0al@rli, 4

4
7)?,@ lwk -

(pkll./\

when |y |; , <7, lel; , <7. The proof is trivial and
will not be given. n

Let us consider the linear operator L’ in C([o, T];
Li(rs3,; ®4  B(3C))) defined as follows:
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Dy, =3u e C([o, T];Z1<R3; ig%i)lB((}C))) su(t) € Dy,

t = Lu(t) € C([o, T}; i1<R3;i§%IB(JC))>% )

(L'u)(t) = Lu(t), w <D,

the linear operator L being defined in (5. 2). Let us,
moreover, introduce the nonlinear operator T' in
(o, T]; YR 304, B(50))):

(T'u)(t) = Tu(t),
the operator T being defined in (5. 7).

Remark: The results established in Lemmas 5.1,
5.2 for the operators L and T still hold true for the
operators L’ and T'. The existence of a unique local
mild solution!3 is then proved by the following theorem.

Theorem 5.1: In C(lo, T]; L1(R3; @2 | B(%))) there
exists a unique local mild solution of the problem (5. 1),
the operators L and T being defined in (5. 2) and (5.7),
respectively.

Proof: The only significant point in the proof is
to remark that, according to Lemmas 5.1, 5. 2 and the
above remark, the nonlinear operator 7/(A] — L’)™1,

X € Ry, is a local contraction for sufficiently large A,
i.e.,

sup | T — L) Yu(f) — T(A — L) Lw(f) |1.A
telon T
= sup lu(t) —o(t)l,
tefo,T]

for sufficiently large A, and |u(f)|, ,, ()l , =K.
Then the proof is given by a simple application of the
Banach fixed point principle. ]

6. CONCLUSIONS

It has been shown that a nonunique converging
sequence of global approximated solutions of the Cauchy
problem (1.1) exists in a three- and four-dimensional
space—time. Independently, a unique local solution of
the same problem has been proved to exist in a more
restricted Banach space. In doing so, the semigroup
methods we applied in the two-dimensional case turned
out to be not of use, so that we have been led to apply to
our problem other mathematical tools: In particular the
Faedo—Galerkin method, which has the advantage of
being independent of the number of space dimensions.

Some conclusions can be drawn. The application of a
general fixed point principle only gives a corresponding-
ly weak result, i.e., the local existence of the solution.

In our opinion, a more direct and useful approach to
quantum field equations can be obtained combining
general differential equations methods with known re-
sults on the operator algebra. In the present case, giving
a rigorous meaning to a priori estimates on the solu-
tion led us to introduce the space L%. In this space it
turned out to be possible to repeat the steps of the
classical Faedo—Galerkin method; nontrivial differences
with respect to the classical case were the use of the
“operator-valued scalar product”—which is not the
usual duality mapping—as well as the choice of a dense
uncountable set in L2. On the other hand, we could not
prove that the limiting point of the sequence of approxi-
mated solutions is an actual solution of our problem,
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mainly because no Banach space is known in which L2
has compact injection,8

These considerations suggest that L2 is a very
natural space to work with in dealing with differential
equations for operator-valued functions; moreover, a
systematic analysis of its properties (or else of the
properties of all the x-spaces introduced in Sec. 3)
should be of relevance for further developments of the
present approach.

ACKNOWLEDGMENTS

We thank Professor G. Da Prato for his continuous
interest in this work, and Professor G. F. Dell'Antonio
for very helpful discussions.

*Qn leave from Istituto per {e Applicazioni del Calcolo, C. N. R., Roma,
Italy.

'A. S. Wightman, “Introduction to some aspects of the relativistic
dynamics of quantized fields,” in 7964 Cargése Lectures (Gordon &
Breach, New York, 1965).

See, in particular: J. Glimm and A. Jaffe, Phys. Rev. 176, 1945 (1968);
J. Glimm and A. Jaffe, Ann. Math. 91, 362 (1970); J. Glimm and
A. Jaffe, Acta Math. 17, 203 (1970); J. Glimm and A. Jaffe, J. Math.

146 J. Math. Phys., Vol. 16, No. 1, January 1975

Phys. 13, 1568 (1972). A review as of 1971 is in Mathematics of Con-
temporary Physics, edited by R. Streater (Academic, New York, 1972).
3A. S. Wightman, Ann. Inst. H. Poincaré 1, 403 (1964)
L. E. Segal, J. Funct. Anal. 4, 404 (1969); 6, 29 (1970)
*G. F. Dell’Antonio, “A model field theory: the Thirring model,” in
1973 Schladming Winter School (see in particular Sec. 5).
SE. Salusti and A. Tesei, Nuovo Cimento A 2, 122 (1971). For a
related problem, see P. de Mottoni and A. Tesei, Nuovo Cimento A
15, 536 (1973).
“For some results, although rather preliminary, see P. de Mottoni and
E. Salusti, Ann. Inst. H. Poincaré A 15, 363 (1971); “Einstein’s
causality as a consequence of canonical commutation relations,” Ann.
[nst. H. Poincaré A 18, 241 (1973); P. de Mottoni and A. Tesei, Lett.
Nuovo Cimento 5, 341 (1972); P. de Mottoni, Ann. Inst. H. Poincaré
A 16, 253 (1972).
#J. L. Lions, Quelques méthodes de résolution des problemes aux
limites non linéaires (Dunod, Paris, 1969).
°M. M. Vainberg, Sov. Math. Dokl. 12, 525 (1971).
9L, V. Kantorovich and G. P. Akilov, Functional Analysis in Normed
Spaces (Pergamon, New York, 1964).

"See, for instance N. N. Bogoliubov and D. V. Shirkov, Introduction
to the Theory of Quantized Fields (Interscience, New York, 1959).

"*N. Dunford and J. T. Schwartz, Linear Operators- Part I (Interscience,
New York, 1958).

13F. E. Browder, Ann. Math. 80, 485 (1964).

A. Tesei 146
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We construct a set of equilibrium states for the ideal Bose gas at temperature 8~

" and chemical

potential u. Our choice for the equilibrium states is based on the Kubo-Martin-Schwinger
conditions. In particular, we define 55,,1 to be the set of states which satisfy the KMS conditions
suitably defined. In the condensed phase a certain subset A, |, of é’w correspond to states whose
mean Jocal densities are not uniformly bounded with respect to the volume. We, therefore, propose
that &, Az, = &, corresponds to the set of equilibrium states. Then it is shown that &,
contains, as special cases, the equilibrium states obtained via thermodynamical limit arguments by
Araki-Woods and Lewis-Pulé. The extremal elements of the convex set 81“ are obtained explicitly.

1. INTRODUCTION

It is often useful in statistical mechanics to study the
properties of infinite systems so as to describe such
phenomena as phase transitions in a mathematically
sharp manner.!-2 Of particular importance is the prob-
lem of specifying the equilibrium states of infinite
systems. One possibility would be to construct the Gibbs
state for a finite volume and then consider the limit in
which the volume tends to infinity while the intensive
variables remain finite. In this way it can be shown,3
subject to certain assumptions, that time evolution can
be realized as a strongly continuous group of automor-
phisms of the C* algebra 9 of quasilocal observables
and that the limit state ¢ satisfies the K.M.S. conditions.
It has been shown,? however, that some systems, includ-
ing the free Bose gas, do not satisfy those assumptions.
In particular the automorphism property does not hold.
Dubin and Sewell? have proposed a weaker set of assump-
tions which do not necessarily imply that time evolution
can be realized as a strongly continuous group of auto-
morphisms of ¥ but do enable them to recover the
principal results of Haag, Hugenholtz, and Winnink.3 It
follows from their assumptions that time evolution can
however be realized as a strongly continuous group of
automorphisms of the von Neumann algebra 7 (3()"
where (2,7 (*),9 ) is the Gelfand—Naimark-Segal
(G.N.8.) triple associated with ¢. It follows also that
¢ the canonical extension of ¢ to 7 ()" satisfies the
K.M.S. conditions.

An alternative to the thermodynamical limit approach
would be to have a global principle for determining the
equilibrium states of the infinite system without ever
having to resort to such a limit. A global approach
would have certain advantages, namely that problems
arising from a possible choice of boundary conditions
do not occur. 52 It has been suggested®.7:8 that the
K.M.S. conditions might be used as such a principle.

Thus motivated, we shall investigate a set of states
&g, for the free Bose gas such that for ¢ e 8y ur ¢ the
extension of ¢ to 770(9()” satisfies the K.M.S. conditions
with respect to the free time evolution suitably defined.®
In Sec. 2, we shall introduce our mathematical notation
and shall give the definition of our C* algebra of quasi-
local observables for the free Bose gas. In Sec. 3, we
define the set &, , and make use of the techniques of
Rocca, Sirugue and Testard!0 to obtain &, , explicitly.

In Sec. 4, we discuss the mean local densities associated
with the elements of &, 5. and then we obtain as a speci-
fic example the states obtained by Araki and Woods, 5P
and Lewis and Pulé.11 Section 5 contains our conclusions.

2. MATHEMATICAL DEFINITIONS

Let I" denote the set of all bounded open subsets A of
R3,where R denotes the real line. We denote by D the
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L. Schwartz space of infinitely differentiable functions
with compact supports in R3, and by § the L. Schwartz
space of infinitely differentiable functions of fast de-
crease on R3. (A) denotes those D class functions
with support in A, A ¢ I'. By 3 (= D) we mean those $
class functions whose Fourier transforms belong to .

If 3¢ is a complex pre-Hilbert space with inner pro-
duct -, ), then a representation of the C.C.R.over &
is defined to be a map

h o= W(h)

of JC into the unitary operatorsU($) on some Hilbert
space 9, satisfying

Wk YW(h,) =
Vi, iy

Wiy + hy) exp(i/2) Imlhy, hy),

e IC,

the Weyl relations, and for which the mapping
A= WA

of R intoU (%) is strongly continuous. The representa-
tion is said to be cyclic if there exists a unit vector £

in © such that the linear span of {W(k)Q; % ¢ 3¢}, is dense
in . An important example is the Fock representation
which we shall denote by (W, $25) with JC taken to be
£2(R3)., We define u: 3 — C by the formula

u (k)

then u is called a generating functional for a cyclic re-
presentation of the C.C.R. over X. For further details
of the representation theory of the C.C.R. that we will
use we refer the reader to Refs. 12,13, 14, The C*
algebra % of quasilocal observables for the free Bose
gas is taken to be the C* inductive limit14 of the local
von Neumann algebras % (A), where the A (A)'s are
defined by

2w (A) =14

=(Q,Wh)®) vhecx;

Weh):h € DAY},

3. THE SET &g,

Define &, | to be the set of states w of ¥ satisfying )
the followmg four conditions with 8, pe R, § >0, u <0,
and (€, 7 ("), »_) the G.N.S. triple assoc1ated w1th w.

1. The mean number of particles in each bounded region
A is finite for the state w and thus!% w is locally normal.

2. I p (k) = w(WeR)) = (2,7 (We@))Q ), vk € © then
¢ has a unique extension [I  to a generating functional of
a cyclic representation of the C.C.R. over 8. This is a
purely technical assumption.16 We denote the corres-
ponding Weyl operators on § by W ().

Copyright © 1975 American Institute of Physics 147



3. Definea,byfc R,a,
where

W (h) = WATh),Yh € §

N .
T,h(p) = expi(p2/2 — p)th(p), vhe S,
and ~ denotes Fourier transformation. @, then charac-
terizes the free time evolution of the Weyl operators
W_. Then our third condition is that « is stationary with
respect to this free time evolution, i.e.,

EATR) = [ k), vhe S,
If we define 9 (8) to be the linear span of {W (k): & € S},
then by using 1 “and 2 it may easily be shown that = S0
=M (S) " and that the time translational invariance of
i, enables us to extend o un1quely to a strongly continu-
ous group of automorphlsms a,; of M (8)” and hence
also of 7 (A)".

4. @ the extension of w to 7 ()" defined by
Wl (0)7) = (@, 7 )2,

satisfies the K.M.S. conditions with respect to &, at
temperature (8)~! and chemical potential (.

For simplicity we shall consider the cases p # 0 and
i = 0 separately. In their paper, Rocca, Sirugue and
Testard!0 define a class of quasifree time evolutions
which correspond to automorphisms of a certain C*
algebra for a Bose gas. For an arbitrary evolution in
this class, they obtain explicitly a certain set of states
which satisfy the K.M.S. conditions with respect to the
corresponding automorphism. A simple adaptation of
that part of their work which deals with generating
functionals, enables us to write [ ,w € &; , explicitly
as follows.

Case I p = 0: In this case [  is determined uni-
quely and is given by
L § k) =exp(— §lnlg — 34, 5,40,

where p h(p) = (exp[B(p2/2 — p)] — 1) 1A(p),

vh € S,
vh € 8.

Case II 1 = 0: This case is complicated by the
occurrence of Bose condensation with the consequence
that the generating functionals are no longer uniquely
determined. The general form for i ,w € &B'u is
given by
IL [ (k) = [, expl— 354k, h) +ioh)ldm (0), vVhe< 3
where the bilinear form Sy on 3 X z is defined in Ref. 10,
p- 130, and is essentially of the same form as in the
exponent for Case I, except that the zero momentum
part has been projected out. The space £ is the space of
all real time translationally invariant linear forms on
5%, (*) is a positive normalized measure on £.

It follows easily? from the definition of 7', and the
time translational invariance of ¢ € &£, that the general
form for o(h),h € 3 is given by

o(k) = Re [f (CO + r)n;lu,(x)>h(X)d3x]

where C, € C and u,(x) is a harmonic polynomial of
order 7,n is a finite integer. If ¢ were, in addition,
space translationally invariant, we would then have

(k) = Re(C o Ja(x)d3x).
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We shall denote the subset of space translationally
invariant elements of £ by £;. Using Lemma 2. 3 of
Ref. 5 and standard continuity arguments, it can easily
be shown that I may be uniquely extended to a generat-
ing functional over S.

4. MEAN LOCAL DENSITIES

Case I i # 0: It has been shown5!! that [  cor-
responds to a constant finite mean density 5 with p < g,
where p. is the critical density.

Case II |1 = 0: Firstly, we consider the generating
functional

ulk) = exp[— 15, g, h) +ioc(h)], vhe z, de &
corresponding to the measure m (*) having point support.
Then a simple calculation of the mean local density!8
for the region A shows that it is not uniformly bounded
with respect to the volume V(A) in the case where ¢ ¢
LN\ Lg.

We regard this situation as being pathological from
the physical point of view and so restrict our attention
to those I, with dm () concentrated on £5.

With dm w(') concentrated on £ it can easily be
shown that we may write

glh, 1) + ir Re(%(0)e 6)]
Xdn, Ve 8,

/. exp[— 3§

) =
RXS1

where ¢, = 7e*% (polar decomposition) and »i(, o, is a
positive normalized measure on R X S1, where S1 de-
notes the unit circle.

If we choose

dmy, g = exp(— 7"2/1’%)11(1/2)/1’%. d6/2m, v, € R,
then we arrive at the generating functional obtained by
Lewis and Pulél! which corresponds to a constant
finite mean density p with p > p,. Similarly, a suitable
choice of the measure »i(, ) leads us to the generating
functional obtained by Araki and Woods.?

5. CONCLUSIONS

It can easily be shown, using standard arguments,!4.15
that for u < 0 the generating functionals 7  so obtained
may be uniquely extended to locally normal states on
the C* algebra % and indeed these states satisfy the
conditions 1 to 4, thus establishing the consistency of the

definition of &, ,

Denote by A, , the subset of §, , the states of which
lack the_uniform bound property We propose that &, AN
&gy 86 , corresponds to the set of equilibrium states
for the free Bose gas. We suggest that for a general
quantum statistical mechanical system a global approach
based on the K.M.S, conditions should include also an
axiom which ensures uniformly bounded mean local
densities.
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I. Hauser and R. J. Malhiot
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(Received 20 August 1973)

For any Killing tensor K .4 of order two, a system of linear homogeneous first-order differential

equations of the form (F ), = Z4(T, 4 F ) is derived. F, F,, ...

tensors K g,

are the components of the

Logy = 2K ypop and M g = (1/2XL (05 + L 5 asp- The coefficients T,  are

linear expressions in the Riemann tensor and its covariant derivative. These equations are analogous

to those satisfied by a Killing vector X, and the Killing bivector @, = Ky, with L, and M

afdyy

playing roles analogous to w,; The tensor L 4, has the symmetries L,y = — Lp,yand

L ap;y =0, and M ;5 has the symmetries of the Riemann tensor. Several relations similar to those
satisfied by covariant derivatives of Killing vectors are derived. Perspectives for further work are
briefly discussed with the idea of using the equations to investigate space-times which admit Killing

tensors of order two.

1. INTRODUCTION

Any symmetric tensor K 4 which satisfies the condi-
tion

Keg,yy=0 (1)

is called a Killing tensor of ordey two. K, will be call-
ed rvedundant if it is equal to some linear combination
with constant coefficients of the metric tensor ¢, and of
terms of the form A, B;, where 4 and B, are Killing
vectors.

We recall! that K, is a Killing tensor if and only if,
for any geodesic motion of a test particle with a world
velocity p % the scalar K, p%P is a constant of the mo-
tion. The recent renewal of interest?® in Killing ten-
sors was largely inspired by Carter's discovery® of a
quadratic constant of the motion peculiar to the Kerr
metric; i.e., the Kerr metric admits a nonredundant
Killing tensor.

The criterion of existence of Killing tensors may lead
to other interesting space-times. This conjecture has
motivated the authors to set up a new system of equa-
tions for investigating Riemannian geometries which
admit Killing tensors of the second order. Our forma-
lism, in addition to other differences from those used in
the past,! is not restricted to an orthonormal tetrad
relative to which the tensor has its Jordan canonical
form. Instead, we work with an arbitrary natural, ortho-
normal, or null tetrad, which can be chosen at will to fit
the exigencies of a given problem. This is the first of
several papers on the subject.

In this paper, we introduce the formalism in terms
of a natural tetrad in an arbitrary Riemannian space.!®
The objective is to derive and briefly discuss equations
similar to the following well-known differential equa-
tions which hold for any Killing vector K_:

K, =uw

By o ob =

RygyK® - (3)

—~ W (2)

waﬂ‘.)’

Equations (2) and (3) may be regarded as a system of
linear homogeneous first-order equations in the com-
ponents K, w,s.

In Sec. 2, equations analogous to the above ones for
a Killing vector are derived for a Killing tensor K_,, with
the following two tensors playing roles analogous to that

of the bivector w,g:
Logy = Ko = Koy (4)
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‘wabyb = Ti"(Loua[y;ol + Lyé ICHD) ). (5)
The result of the derivation in Sec. 2 is a system of lin-
ear homogeneous first-order equations in which Ksos
and Mg, are each equal to a linear combination
of t¥1e components of K4 and M, .. These dif-
ferential equations w1ll be calyled the structural equations

Jor a Killing lensor of ovder lwo.

Some interesting properties of the tensors L gy @0d
Myg,s are also derived in Sec. 2. In particular, we show
that M, . has the same symmetries as the Riemann
tensori! and that the covariant derivatives of K and
L,, satisfy relations reminiscent of those satisfied by
Killing vectors.

In Sec. 3, we give the flat space solution of our structu-
ral equations, discuss Lie derivatives of a Killing tensor
with respect to a Killing vector, and briefly discuss per-
spectives for applications of the structural equations.

In the immediate sequel to this paper, we will interpret
Ly, and M4, geometrically and develop the null tetrad
form of the structural equations in space-time.

We now begin our derivations by taking note of the
symmetry properties of L, and M, ,, after which we
turn to the main task of computing the covariant deriva-
tives of K5, L, ,and M.,

2. THE STRUCTURAL EQUATIONS

The symmetries of L, and M, follow directly from
their definitions and hold for any symmetric tensor K,
whether or not it is a Killing tensor,

Equations (4) and (5) imply
L y:l’[ubly’ (6)

B

L =0. (7)

[yl

Therefore, in space-time, L_, has 20 independent com-

apy
ponents. From Eq. (5),

MWW = :1‘1[(15][%] = n/fyéad. (8)
Also, if we use Eqs. (4) and (5) to express M,  in terms
of second covariant derivatives of Kes

1 ' -

Mocd)'o =z (Kﬁy:(aé) + Aocé;(dy) Aay (o) T A o;(u)))' (9)
From this, we obtain the identity

"’l'fozﬁyé + ‘“yaﬁé- + ,-’Wﬁ)aé = 0. (10)

Therefore, Myg,

Riemann tensor

has the same symmetries as the

Copyright © 1975 American Institute of Physics 180



As regards the covariant derivative of K_g, the defini-
tion (1) of a Killing tensor and the definition (4) of
Ly, imply

Kﬂy;a =% La(ey)' (11)
Conversely, Eq. (11) and the conditions L, = —L;, and
Lipsy = 0 imply Eqs. (1) and (4). The similarity of £q. (1)
to tﬂe Killing vector equation (2) is clear.

We recall that the divergence of any Killing vector
is zero. The following analogous relation for Killing
tensors is easily derived from Eq. (1):

(K2 + 3K,p08)., = 0. (12)
From Egs. (9) and (12), we then obtain the interesting
looking equations

Mcly = Maﬁyﬂ =—3 (AKay + KEB',ay)!

M=M,"=~3AK" (13)

where AK, ;= (Ka...B) e

The covariant derivative of L, is derived by com-
puting Lyg,.syand Loy . o) and then summing these ten-
sors. From Egs. (4) and (1), after an appropriate group-
ing of terms and use of the Riemann tensor symmetries,
we obtain

+ K

By:loté] oyileBs) +K

L souly 8]

ably; ) = K

+ KBé'.Lay] + Kyb:LaB]

= ZRaBp(yKé)u - ZK“[aRB](yé)A - (14)

Equation (4) implies

L L

aply:o) — Tyslais)

K

ayi[B6] +K

=K sl Byl —K

By:lad] — 88 lay)

= =R aKa) + Ry " - (15)

apply
From Eqgs. (14), (15), and (5), we have our resuit:

9
Laey: 8= _BROLBp(yKé) - IK”[éRamw (16)

— 3K R

O roBlop + M

apys*

Equation (16) has the corollary

1m

thsp:u = RBPK‘AQ - RapK“m
a relation which shows that L_, has a formal resem-~
blance to an angular momentum density,

We next obtain an expression for the covariant deriva-
tive of M, ,. Our derivation starts with Eq. (14) which,
with the aid of Egs. (6), (7), (11), and the Bianchi identity,
implies
L L K,

aBlyidd  apsipy = Raﬁyé;u

—2R, 050 Ker” — Ry oo

uyd; o B]y _KU[C!R

woagily Bluydiv

1
—Raﬁpvl‘nu +3 5225(6%“ (R‘wauLw(w) + ZRV’(W)ULw(Vx))'

An alternative expression for the tensor in the above
equation is obtained as follows:

151 J. Math, Phys., Vol. 16, No. 1, January 1975

Losg:ne = Loy

= Hopuslysl + Laﬂy',[ué_l +La66‘.lw] + LaB[y'. [

=R "Lag, + 2055008 (Ryo' Ly, —

1
aBtys ZR WWPUL

apy XU#)

+ LotB[y: olu-

After equating the preceding two expressions and using
the Bianchi identity and Egs. (5) to (7), we obtain our
result:

Raﬁyé:uh Up

Mogysin =

U w /P 1 -3
+ (5£§5y§ + 6%&;676})[2 (12‘?9)\' U v 4R¢x¢lu:u)Kw”

1 L
_3R¢xpul’wuu *3 (Rﬂﬁwy +H¢ll)uu)1:wux

+ z’l‘quxw” (5L, + 7pru)]' (18)

Equations (11), (16), and (18) are our main results, As
we noted in Sec. 1, they will be called the sfructural
equations for a Killing tensov of order two. In the gen-
eral case, the first integrability condition for these
equations is obtained by computing Megysilng » and this
will be discussed in a sequel to the present paper. Note
that in the special case where K, is a parallel tensor
field, L, and My, ¢ vanish, and Eqgs. (16) and (18) are the
first and second integrability conditions for Eq. (11).
Other special cases worth noting are those for which
Lypy OF Myy)s 18 2 parallel tensor field.
3. DISCUSSION

To give us a little feeling for the structural equations
and to test their merits in one simple case, let us con-
sider their solution in a flat space. Choose Cartesian
coordinates x %, whereupon covariant differentiation
becomes ordinary differentiation, and Egs. (11), (16), and
(18) are easily integrated.

The general solution is

A

M, aByo?

adys
_ s
Loy = Bagy + Aagys®®s

K (19)

— 2 o L 5
sy = Say + 3B()L(By)x + 3Aaﬁyéx"'x°,

whe.re Sy Baﬁy, and A“lwé are arbitrary uniform fields
having the same symmetries as K, , Laﬁy, and M.,
respectively. It is common knowleége that the above
Killing tensor is redundant.

The above flat space solution demonstrates, by the
way, that K, Laﬁy, and Mg, contain the minimal number
of independent components 'F, which can occur in any
generally applicable equations of the form

(Fp).a= 23T ganFg, (20)
where F, F,, . ..include the components of K, and where
T, 4p are coefficients which are linear expressions in the
Riemann tensor and its covariant derivative. Equation
(20) is the form of our structural equations. In space-
time, the number of independent components F, is fifty.

With so many components to handle, a thorough analy-
sis of space-times which admit Killing tensors is not
going to be completed overnight. The only objectives
which can be attained in a reasonable time involve
special cases.
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One good subject for study would be a space-time
which admits some given group of isometries in addition
to a nonredundant Killing tensor. For example, we can
consider any axially symmetric stationary space-time
and impose the condition that it admit a nonredundant
Killing tensor.

In this connection, it is useful to recall that the
Poisson bracket of a linear constant of geodesic motion
and a quadratic constant of geodesic motion is a quadra-
tic constant of geodesic motion. In other words, for any
Killing vector ¢ and Killing tensor K_,, the Lie deriva-
tive

£, Ky
is also a Killing tensor; the corresponding Laﬁy and
Mz, are given by

L,L

eLaay and £€M

aByé?

because covariant differentiation and Lie differentiation
with respect to a Killing vector commute. A special case
which may be relatively simple to handle in calculations
is one where the Lie derivatives of the Killing tensor
with respect to some abelian group of isometries is
zero. This is the case with the Kerr metric Killing
tensor found by Carter.?

Another good subject for investigation is the family
of algebraically special space-times which admit Killing
tensors. Examples of what can be done in this area are
the existence theorems obtained by Walker and Penrose?
for conformal Killing tensors in type D vacuums. The
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authors are currently looking at the problem with the
aid of a null tetrad version of our structural equations.
The details of this null tetrad form, which is a Killing
tensor parallel of the Newman-Penrose equations, will be
given in the immediate sequel to this paper.
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The rest frame in stationary space-times with axial
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A rest frame in a stationary, axially symmetric space-time is defined as a synchronizable frame
which is as nearly Killing as possible. This is a possible generalization of the Newtonian rest frame.
A kinematical theorem giving the condition for the existence of a rest frame whose time vector is a
linear combination of the Killing vectors is proved. The frame is also unique. The condition is shown
to be weaker than the assumption of orthogonal transitivity. The surfaces of simultaneity of the rest
frame are the surfaces of constancy of a particular Killing time coordinate, and its time vector is the

component of the time Killing vector orthogonal to the angular Killing vector. Some properties of
the rest frame are then discussed; it is shown that the frame is well-behaved down to the event
horizon, where its time vector becomes null. Under a suitable condition on the event horizon, the
time vector coincides with a Killing vector there. The gravitational redshift relation in the rest frame
is derived. There is a dependence on the angular momentum of the geodesic. Furthermore, the event
horizon is shown to be an infinite redshift surface for the rest frame observers. Finally, the
three-vector potential of Landau and Lifshitz is interpreted and shown to be closely related to the
rest frame, and a corresponding four-vector potential is invariantly defined.

. INTRODUCTION

Consider a space-time that is stationary,! axially
symmetric, and flat at infinity. These properties imply
that there exist the following two vector fields: a vector
£o, which is timelike at infinity and has unit length
there, and which generates the infinitesimal motions of
a translational symmetry; and a vector 7%, which gene-
rates rotations with closed orbits about a symmetry
axis. Flatness at infinity further implies that (—non )-1/2
(£5n,) goes to zero at infinity. n< is normalized so that
a change in the corresponding group parameter by 27
exactly covers one orbit. These two vectors are called
Killing vectors. The symmetries are expressed mathe-
matically by saying that the metric g 4 has Lie deriva-
tive zero along £« and n<:

ggaﬁ = zg(aiﬁ) = 0’

1)
Engocﬂ = 2"(@;6) =0.
Furthermore, a theorem of Carter2 guarantees that ¢
and 7 commute:
gna:_ggu :Eﬂnayﬁ_nﬁga,a__.o. (2)
3 n

When the infinitesimal two-surfaces orthogonal to £«
and > are surface-forming, the space-time is said to
be orthogonally transitive. In this case, space-time is
filled by a two-parameter family of two-surfaces which
are everywhere orthogonal to both Killing vectors. The
condition that we have orthogonal transitivity is that the
Ricci tensor be invertible in the group.3-6 For such
space-times, Bardeen?"9 has found a vector field ¢«
which is irrotational. He calls it the local nonrotating
frame. {2 is defined as

Co=gx — (E8ng/mrm,)ne,
()
Saf, =828, —(E2n,)2/mby,.

{« is the projection of £= orthogonal to n«. Since £« is
irrotational, observers who follow world lines along £«
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without rotating with respect to the neighboring obser-
vers, feel no Coriolis forces. Thus, the dragging of in-
ertial frames is eliminated. Irrotation is equivalent to
local hypersurface orthogonality,i.e., in some neighbour-
hood about each point, the infinitesimal three-surfaces
orthogonal to { ¢ are surface-forming. But £« is actually
globally hypersurface orthogonal. The local hypersur-
faces extend globally, and therefore define spaces of
simultaneity for the {«-observers (their world-time
clocks are synchronized by the hypersurfaces). We will
say that {« is “synchronizable,” as opposed to just irro-
tational. (See the Appendix for an example of a frame
which is irrotational but not synchronizable.) The £«
frame is a possible generalization of the Newtonian
nonrotating rest frame.

This paper will consider the definition of a rest frame
in asymptotically flat, stationary, axially symmetric
space—times without orthogonal transitivity, We will
show that a synchronizable frame, when it exists, is
uniquely defined by {«, and that local hypersurface ortho-
gonality of {« is sufficient for existence. The discussion
will be completely kinematic and independent of any
field equations. Carter3 has discussed the physical sig-
nificance of orthogonal transitivity for such space-
times in general relativity; vacuum is generally ortho-
gonally transitive;5 circulatory matter currents which
break the discrete inversion symmetry (¢ - — ¢<,
n® - — o} can for instance destroy orthogonal transi-
tivity. Therefore our results may apply to rotating,
convecting astrophysical systems,

Il. THE REST FRAME

First we prove a lemma which generalizes a well-
known property of Killing vectors.10

Lemma: 1f the vector field we is never null in
some region,then we = wfw, ) lwe satisfies

w[a,ﬂ] =0 “)

if and only if
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w[awﬁwy] =0
and

(W W gy —WeW (q;y)) W7 =0, (5)
(If w> is a Killing vector,w (.4, = 0, then this reduces

to the statement that wo is hypersurface orthogonal if
and only if it is closed when divided by its square.)

Proof: Assume Eq.(4). First expand this, and then
take an antisymmetrized product with w :

(way)w[a‘B] + (wrwy),[awﬂ] =0,

(6)
Wiy 4y = 0.
But
(Wwa),a = 2wy;aw7 = 2w (W, n w[a’y]). (7
Substituting, we obtain
3w7w[uw6‘7] + wY(w(m;y)wB — w(B;r)wa) =0 (8)

which establishes Eq. (5). Conversely, if (5) holds, then
(8) and (7) combine to produce (6) and hence (4).

We can now state and prove the main theorem of this
paper.

Theorem 1: In any stationary, axdally symmetric
space—time that is flat at infinity, the Killing vectors
&e and no satisfy

Crap) =0 (9

if and only if there exists a vector field w> satisfying
the following:

(1) gwazgﬂw&’e _wﬁgd,s :O’gw(x—_—nﬁwu,s
— wﬁna'ﬁ — 0;

(ii) we = £« + Bne,we — go at infinity;

(iii) outside of some world tube, there exist global
functions ¢ and x such thatw , = ¥x ,.

Furthermore, if Eq. (9) is satisfied, then w® = [« is the
unique vector field satisfying these three properties.

The three properties say that w« must be invariant
under the transformations of the group, must lie on
orbits of the group, and must be globally hypersurface
orthogonal.

Proof: That £ is locally hypersurface orthogonal
if and only if Eq. (9) holds follows from the lemma by
showing that

Ciapy$P=0, (10)
& £&rn
<§ — *6—7 77> = — < 5 7 s (87a) (11)
s (w:8) LARIF
from Eq.(1). But {« is orthogonal to n%, and
¥ p
(51 oo S )
1305/ nen,
g §°‘7)B P g oc»,)b
:£< b >wgn” £< as & >=o (12)
e \&,sMN° N°Ng 1Ny s

from Egs. (1) and (2). £« obviously satisfies conditions
(i) and (ii). I one removes a world tube containing all
singularities of space—time and of the form { , (there
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is flatness at infinity), then this becomes a closed one-
form [when Eq. (9) holds] on a simply connected mani-
fold, and is therefore exact. So

> (E8n;5)2
Ca =X, Ca = |:£B€a_—"'ﬁ_ X, o (13)
nn,
Hence w* = {> satisfies all three conditions if and only

if Eq. (9) is satisfied.

To complete the proof, we show that any other form
which satisfies conditions (i) and (ii) cannot satisfy (iii).
Suppose that £« + Bne, B = — (gana)/(nbnﬂ), satisfies
(i) (i.e.,B,a (e =B _ n® =0)and is locally hypersur-
face orthogonal. The last property implies that
0=3(+ Bn)[a (& + BT))BJ] nr

= (Ey + BTI,)W(% + Bn)[a,ﬂl
+ [(Eq + B )(E + By
— (&g + Bug)(E + B)y, 7. (14)

On the other hand,
(&5 + Bnd)n; )2 {[(57 + Bun)n, T (5 + Ba)d g

= [(&7 + Bn)n, | (€ + Bn){ o)
— (& + By [(&Y + Byr)n, ] g (15)

The above expression will be zero by virtue of Eq. (14)
provided that

— 2(8 + B)jg, )W = — 25 )Y+ Buygg 1) + (070 ) B

equals (16)

[ + Buv)n ] 4= (7n,) 5 + B(nrn,) , + (/) B ;-
amn

But by Eqgs. (1) and (2),
(€71,) o= &6 MY T 00 £V = &y a1 07+ gy 0 87,
() =20y 5 17, (18)
O =8y, =M Eg., = &y sy 1Y — Niyp &7

So Eq. (16) equals (17) and [(¢Y + B777)717]'1 (£, + B1)
is a closed form. Integrating this form over an orbit
of n«, we obtain

$ (g8 + Bu®)n, )t (s, + Bn,)dxe

n-orbit

= fo?“n [(gb + Bnﬁ)nﬁ]"l(ga + Bna)no(d(p = 27. (19)

Therefore, ¢§, + Bn, is proportional to a closed but in-
exact form, and so is not globally hypersurface ortho-
gonal. This completes the proof of the theorem.

From this point on, we shall assume that Eq. (9) holds.
Orthogonal transitivity is sufficient but not necessary.
One can see this as follows. Since the two-surface
spanned by £* and ¢ is the same as that spanned by
¢« and n*,the conditionsll for orthogonal transitivity
can be written

C[anﬂgy,élz c[a”ﬁny,éJ: 0. (20)
The first impliesl2 that everywhere off the axis

g[agg'yjze[aﬂnyjy (21)
where 0 , is some two-form,0 4= — 6, . Further-

more, since in Eq. (21) we can replace § ; by
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eaﬂ + 2(77‘5775)_17779““778] (22)
we can assume that 8  n« = 0. Therefore,
3C[QCB,7]777 = (777777)90,5 - (23)

But
3§[ocgﬁ,y]777 = (chc[ﬁ,ﬂ

£rn £, ;
Crep1nf = <€[asl* L N gy — > ne
n%n 12105/ 15 Ml

&
¥ Y
—'—%[(55775).& - : 777(773775),0( + <§“ﬂl> 180,
nns 1°1057 g

- (nﬁns)<£m’> ]
o1, L«

=— %[(EBWB))(X — (£8my)

- €BC[a_,J)n7,

B
+ £ (E_"i) T]a}: 0.
n gy,

(24)
Therefore,d ,; = 0,and Eq. (21) implies that £ is
hypersurface orthogonal.

On the other hand, given that Eq. (9) holds, all that we
know is that C[anBC 51 = 0. Equation (18) gives informa-
tion about the components of LI along ¢« and %, but
nothing about its other independent component, which is
of prime importance in the evaluation of {; 7 5Ny, 61
Thus, we do not necessarily have orthogonal transitivity.
Equation (9) is a weaker condition.

Next we prove that the function ¥, defined in Eq. (13),
is a time coordinate adapted to the Killing frame. By
this we mean that there exists a coordinate system
(0 = x,x%,x2,x3) such that £« = 6,7« = 6%. x is,of
course, unique up to an additive constant. From the
definition of x , and Egs. (1) and (2) we have

% X,oc:g X,oc=0' (25)
Moreover, ( .
Tl n
T <£p5 £ > <§a_£ B na>= 1, (26)
’ NN, nr,
naXa 0.

Therefore, x is a Killing time coordinate 7', and we have
(£8114)2

nry,
T  is the unique Killing basis form which is a linear
combmatlon of £, and 7 . [If Eq.(9) does not hold, such
a T , does not ex1st ]

— (£2n,)/(m*n ;) is the coordinate angular velocity of
the {= frame in the Killing frame £2. The four-velocity
of a {« observer, and the acceleration, expansion, rota-
tion, and shear of the {« frame are respectively defined

as
),

(27

By Y2\-1/2
= (L8 g,)L/2 Lo = <gsgﬁ _ El’i) <£a _
v,

£,
11,

as =ua:5u6’ o =UC o Wap = YUlg,8] — Ba#s] s
Tap = taip) — Aattp) — 50(8ap —Uuytg). (28)
Calculating these, using Eqgs. (1) and (2), one obtains
b Ked
6 =0, Wea = (5556)1/2 E[Q,B]:OJ (29)

Pas = @182 (- Z2),
nen

o
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The expression for w g tells us what we already know,
that the frame is irrotational if and only if Eq. (9) holds,
Since 6 = 0, the time-dependent terms of the metric
components in the {«-frame result from the shearing
of the £« congruence. [Since {* and ® commute, we
can retain 7« as a basis vector and the axial symmetry
remains in the metric components. See, for example,
Eq. (36).] The expression for the acceleration shows
that since these observers are the generalization of
Newtonian rest observers, the generalization of the
classical gravitational potential should be

(gana)Z:I 1/2
nﬂna

and not the traditional In(¢=¢ ,)1/2 obtained in the Killing
frame.

In(Cet, )12 = In [ga&a - (30)

We now provel3

Theovem 2: The € frame is well-behaved down to
an event horizon, where {« becomes null.

Proof: n>,having closed orbits on which n«n  is
constant, must be spacelike everywhere (except on the
symmetry axis where the orbits degenerate to points
and n® = 0). Since nen_ < 0,{« defines a well-behaved
frame down to where it becomes null (assuming, of
course, that there are no naked singularities of space—
time). Consider the surfaces of constant {«{ . (The
acceleration shows that (CBCB), «» the normal, can vanish
in a region only if the {« curves are geodesics.) We
calculate (CBC ) «(£78,)¢¢ using Eq. (9) and that
(€2¢,) , ¢« = B by Eqd. (1) and (2).

8o = €BENE,,  Crpsr = (€780 16T, 1,
Cla.py 808 = (W)L, ,(7C, )
(CBCB),Q(C?’CQ‘“ - 2<§6§§)<[p',,JC‘u"U

Therefore, when { © becomes null, so does the surface of
constant {«{ . This is a one-way surface which does
not extend to infinity where {«{ = 1. Hence, it is an
event horizon, The {« frame is well-behaved inside the
ergosphere, where £« is spacelike.

We can also generalize the theorem3 that £« coincides
with a Killing vector on the horizon when space-time
is orthogonally transitive.

(31)

Theovem 3: If L= = 0 and C[anﬂn = 0 on the
event horizon, then { « coincides with a K1111ng vector
there.

Note that we will use the conditionthat ¢ _n 87y,6) = =0
only on the horizon. Orthogonal transitivity 1s still a
stronger condition. The assumption that £« # 0 anywhere
on the horizon says that £« and n< are independent off
the axis, and that £ = 0 at the poles. In other words, we
assume that on the horizon there are no degeneracies of
the group, except for the obvious one at the poles. In the
Schwarzschild solution, for example, the only place
where this assumption is violated is at the center of the
Kruskal diagram. These events cannot be reached by any
timelike or null curve which falls into the horizon from
outside. One would hope that the assumption is valid for
any stationary, axially symmetric black hole formed by
gravitational collapse.

Proof: We must show that— (£27,)/(nfn,) is con-
stant on the horizon, i.e,, that its gradient is normal to
the surface. Since the horizon is a null surface, its nor-
mal lies in the surface, along its unique null direction.
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Hence, since , = 0, (§ BCB) = D¢, for some function
D. Thus, it is suff1c1ent to prove that [~ (& Bnﬁ)/ nYn )]
is proportmnal to § . Off the symmetry axis we have

56775) _ 2 2577)
A ITN Me.a18” ey Mt 17
= (2/11717,)77[5,“] ge (32)
by Eq. (18). Therefore, since £« is null,
£, \
(= 5o et = @/, 80000 184 + Mgt
3
= T80 5 5y - (33)
nn,

As in Eqgs. (21)-(23), our hypothesis implies that there

exists a form A ;,A 5 =~ Ay ,A ;18 = 0, such that

c[anﬂ,)’l = A[aﬂ'fl),]y
3
A= c[O(nB ]7‘]7
ab 7)677 > (34)
= (1/10)€ s,y + Eally, )17
= (1/1%05)070,) (o 8s)

Finally, we find that

Stale,y1 = A/M05) MPn,) (o 8a7, 5,
C[anﬂ,y] Ly = 0.
Therefore from Eq. (33),[— (§871,)/(n7n,)],
dependent; and since {

As an example, we transform the Kerr metricl416 to
the rest frame. In the orthogonally transitive Killing
framel7 and in the rest frame, respectively, the metric
is

(35)

and €,

a

ds2 = (1 — 2mrp2)di2 + 4mar sin20p2dtd¢ — p2Aa1ldr2
— p2d62 — sin20Ap~2d¢2,

1l

2 + a2 cos20, A = r2 — 2mr + a2,

= (r2 + a2)2 —

p2
a?A sin26,

ds? = Ap2ATldi2? — sin20Ap2d¢2 + 4mat sin20Qp2A1dvd$
— 4madtr A sin28 sin26p2471d6d ¢
+ 8m2a4{2r A sin20 sin260Qp 2A 3drdf
— (p2A71 + 4in2a2t2 8in26Q2p2A3)dr2
— (P2 + 4n2abt2r2A2 sin220 sin26p 2A73)d62,
¢ = ¢ — 2matrA™1,

Q = (r2 + a2)(3r2 — a2) — a2(r?2 — a2) sin26.

(36)
Il. THE GRAVITATIONAL REDSHIFT
As an application of the £ frame, we will find the
gravitational redshift seen by the rest observers. Given

a geodesic with momentum vector po and affine para-
meter A, (D/DA)pe = p*. . pf = 0, we have

d &,
E(PQC ) = [POL(E — W:s n >13p5

— (pn®) ( LA ) pe 37)
nd Ms
since Eq. (1) gives the well-known results
(PQE“);ngB:Ea;BP“PB =0,(Pu71°‘);gpe=0- (38)
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= 0,the proportmnahty is proved.

— p, 1% is just the (conserved) angular momentum L,
of the geodesic,and p u* is the energy. Integrating
Eq. (37), we find that at positions 1 and 2 on the geodesic,

a 271/2 1/2
R LT
776775 Tlﬂflﬁ 1

:LZK——E "“) - <-«£ n” (39)
nENg/ o n8ng/y
The redshift depends on L,

We can show that the event horizon is an infinite-
redshift surface for the {* observers, provided that { «
does not vanish there. It must be proved that for an
arbitrary world line, as event 1 approaches the event
horizon holding E; constant, the energy E, measured at
the event 2 outside the horizon approaches zero. We
can write that

EZ (p“ua)2

Ey _ €*8,)1/2 (p78,),
Ey  (bPug)

CRELY2 (pPL,),
p 1is timelike or null;{ is timelike, but approaches a

null vector at 1 as 1 approaches the horizon. Both are
non zero and future-pointing. Therefore,

(40)

(pe8,)1> 0,
€eL,)y — 0.

The possibility that (p={ ); — 0 can be eliminated as
follows: ¥ p«f_ = 0 on the horizon, then p« =SC« there.
b would represent a photon which instantaneously
moves in the horizon. But the { ® curves (properly
parametrized) are null geodesics in the horizon. One
can see this by con51der1ng the nqrmal to the horizon,

€PEs) o = DL

= @ﬁcﬁ),a = ZCB‘:B:a = 2‘25(2{:(6;&) - §o¢;b)
=—2Ca;6§5, ca;lz,cb:AJzDCa

(peL)> 0, (€28 )~ 0,

(41)

(42)

by Eq. (10). Equation (42) says that with proper para-
metrization, the {« curve is a geodesic. Therefore,
since there is only one geodesic through a given event
in a given direction, the null geodesic along p¢ would
be the £« curve, and therefore the photon would have
lain on the event horizon in the past as well. In other
words, no photon which falls into the horizon from out-
side can have p>{ = 0 on the horizon.

Therefore, (p¢ ); + 0,and E, must approach zero.

IV. THE VECTOR POTENTIAL

Landau and Lifshitz18 have developed a three-dimen-
sional equation of motion for free particles in the Kill-
ing frame of a stationary spacetime. They work in the
infinitesimal three-surfaces orthogonal to £+. The
rotation of the Killing frame gives a Coriolis term in
the equation. The three-dimensional angular velocity
(which is the three-dimensional form of the actual angu-
lar velocity) is written as the curl of a three-vector. In
Killing coordinates (¢,x?), this vector is

g,s't) :—gOi/gOO' (43)
(The tilde denotes three-dimensional quantities.) Under
a change of gauge in choosing Killing coordinates,

(44)

o=t + fOx?), x3 = fix?),
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g =g47f7 ; differs from g@ by f © ;, which does

not affect its curl. For the space-times we are consider-
ing in this paper, we can invariantly define a vector
potential as a differential form A, which is orthogonal

to £, Ay = A £* = 0, and whose space components agree
with the three-vector for an appropriate choice of time
coordinate.

If a caret signifies projection orthogonal to £¢, note that

L £, =t ! ou =~ 22 o

,a_,a_T a“,a_g__‘ Ooc_“g i
§7E, 00 00 (45)

This is the form which corresponds to g ). Since we

have a preferred time coordinate 7, define
Ao =T o =8, = (&505) [(571,)2 — (€& Ymén )1 7,

B
= (85 ng) [(&0m))2 — (ﬁpgp)(7i°n(,)]‘1<na - ;Zﬂ ga>.
" o)

Moreover, the three-velocity 15,. of the {« frame as mea-
sured in the £« frame is

vi=—(g2g N2 (A—> == E2E)Y2EM = (800) 28, -

¢ (47)
The three-vector potential is, essentially, just this three-
velocity. o;, or invariantly A, describes the dragging of
inertial frames.

In our Killing frame, with = = 65,8 @ is

g — _ g0i = _ 503 64 (48)
since Eq. (27) implies that,for i = 1 or 2,
g0t =Ti(xt) , =Taxd)
= (o, ( “_ f}lgz n“) @)
= (CBCB)'1<’”,0— f}:?’: xi ’3>= 0 (49)

We will use Eq. (48) in a moment. First note that in a
general stationary spacetime, the condition that the
hypersurface ¢ = f(x%) be maximal is

6 f(1&)1/2 dxldx2dx3 = 0,
Z=adetl g, I, (50)
gij:goof,if,j +g0]'f_i +g0;’f,j+gij-

Using the Euler—-Lagrange equation, one finds that this
is satisfied by f = constant if and only if

g 1/2 )
(C5) 0] =0 =0,
Vi

_ tra _ qu
(t,ﬂt:ﬁ)l/z (g00)1/2 *

(51)

na

Equations (48) and (51) imply that for the space-times
that we have considered, the surfaces T = constant are
maximal hypersurfaces. Perhaps one can generalize
the definition of {* to other stationary space-times by
requiring that the surfaces of simultaneity of the rest
observers be maximal.
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APPENDIX

Consider an inertial frame in special relativity. Use
cylindrical coordinates (¢, 2,p, ¢). Suppose we have a
set of observers who rotate about the z axis with angu-
lar velocity a/p2, where a is some nonzero constant.
We are considering the region p > |a|. The metric is

ds2 = dt2 — dz2 — dp2? — p2d¢2. (A1)
The four-velocity of an observer is therefore
2\-1/2
w o= (127 (es + 5 03)
(A2)

2\-1/2 2\-1/2
u, = (1 -Z‘—z> (69 — asd) =<1 —%) (t— ag) ,.

Therefore,u, 1is proportional to a closed form, and the
motion is irrotational.

However,! — a ¢ is not a single-valued function. As a
result, (f — acp),)\ is not an exact form, as can be seen
by integrating around a closed circle C about the z axis:

$—ap),ar=[2"2 (—ag)dp=—2ma 0,
c ' ¢
(A3)

Hence,u > is not globally hypersurface orthogonal.
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A minimum principle for von Neumann’s equation
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A minimum principle is described which has von Neumann's equation of motion of the statistical
operator as its ultimate solution. When the statistical operator is initially restricted to be a projection
of trace unity, the minimum principle has Schrédinger’s time-dependent equation as its ultimate
solution. As a result, the present minimum principle is shown to be a generalization of one first
introduced by McLachlan, with a modification of the Dirac-Frenkel variational principle as a
necessary consequence. In physical terms, the quantity that is minimized is shown to be the
mean-squared deviation of an effective time-dependent Hamiltonian, which can be attributed to a
time-dependent stafistical operator initially chosen to describe a system, from the actual
time-dependent Hamiltonian of the system. Examples of approximate solutions to von Neumann's
equation and Schrddinger’s equation that are obtained by use of the minimum principle confirm this

identification.

1. INTRODUCTION

Soon after the formulation of Schrodinger's time-
dependent equation of quantum mechanics, the first vari-
ational principle having the objective of determining
good approximate solutions of that equation—the so-
called Dirac-Frenkel variational principle!>2—made its
appearance. At the present time, especailly as the result
of recent investigations, several variational procedures
are known3~11 that serve to accomplish that objective for
a variety of quantum mechanical problems. No com-
parable mathematical apparatus is available for deter-
mining good approximate solutions of von Neumann's
equation of motion for the statistical operator,12how-
ever, and it is to provide some alleviation of this situa-
tion that the present paper is directed.

In the following section, a minimum prvinciple for von
Neumann's equation is formulated and comprises the
main result of this paper; when the statistical operator
is initially restricted only to be a projection of trace
unity, Schirodinger's time -dependent equation is obtained.
As a result, the present minimum principle is shown to
be a generalization of one first introduced by McLachlan,®
with a modification of the Dirac-Frenkel?-2variational
principle as a consequence. The effect of imposing
constraints which ensure that the minimum principle
cannot yield exact solutions to these equations is consid-
ered, by examples, in the next section. Based upon the
results that are obtained, the final section provides a
physical interpretation of the quantity being minimized:
It is the mean-squared-deviation of an effeclive time-
dependent Hamiltonian from the actual one of a system,
the former being one that is attributable to a time-
dependent statistical operator initially chosen to des-
cribe the system. The effect of imposing initial con-
ditions of continuity in time are also considered.

2. A MINIMUM PRINCIPLE FOR VON NEUMANN'S
EQUATION

Any formulation of a minimum principle which seeks
to provide good approximate solutinons of von Neumann's
equation as the result of appropriate variations in the
slatistical operator must recognize, at the outset, the
nonnegative property of that observable. For this
reason, we begin by introducing an operator t({) such
that

T(OT1) = p), 2.1
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where p(f) is the statistical operator of von Neumann
at time ¢ . In terms of 7's we next introduce the real,
nonnegative quantityls

A, (/) =Tr [(H(t) ih 31) -r(l)] T [(H([) ih a,) -r(l)jl ,
(2.2)
where H(!) is the (Hermitian) Hamiltonian of the system

of interest at time /. It is our immediate objective to
obtain a solution of the variational equation

ola, (o +)/Trp(ld] =0 (2.3)
subject to the constraints

67(lg) = d11{ly) = 0, (2.4)
wheret

a,(tg*+) = lim A ({5 + x). (2.95)

x>0+

The variations in 7(4), f > {y, are presumed to be small
and consistent with any restrictions that may later be
prescribed for p(/), but are otherwise arbitrary.

Before doing so, however, we note that the essence of
the variational problem expressed by Egs. (2. 3)-(2.5)
is to seek the necessary and sufficient conditions that
make [ A, (£)/Trplly)] @ minimum in the immediate
neighborhood of an initial time t,, at which instant the
values of v and, hence, p are prescribed. That the value
obtained will be a minimum is ensured by thefact that
A {#) is demonstrably a concave function of the varia-
tions in (/).

To proceed with the solution of Egs. (2.3)-(2. 4), we
introduce the quantity

D,lg; 8) = Cfooodxe‘“Ap(tO +x), ¢>0andreal. (2.6)

In these terms, the variable portion of Eq. (2. 3) is ex-
pressible as

OAP([Q +) = lim GD}'([();C), (2.7

L=+ o0

By substituting Eq. (2.2) into Eq. (2. 6), carrying out an
integration by parts and invoking the initial condition
of Egs. (2. 4), we obtain
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6D, (tg3 €) = € [ “dxe-tr {Trér*(to + x)[(H([O + x) — ifi %)

x (H(to +x) — it %) Tty + x)]

+ Tror(ty + x) [(H(lo +x) —ih é%)

x (H(to + x) —ih %)T(to + x)]T} + ihczfomdxe*g-‘
x {Tror (o + ) [(Hto + %) — i )70, + ]

— Tror(ly + 0 [(H, + 0 — b ) 7+ 0] 1}
(2.8)
By passing to the limit, { - + ooi and using Eq. (2.7), we
find that Eq. (2. 5) requires that®®

)t ]

Tror i +) KH(z0 +) —ih

= Tror(to +) [(HUo +) 8?0) o )] T @.9)
which can be re-written as
Im {Traﬂ(zo +) [(H(zo +) —ih %) Tty +)}} ~0. (2.10)

When 67(¢,, +) is arbitrary,Eq. (2. 10) yields von Neumann's
equation, as we now show. To do this, we first express
Eq. (2.10) in terms of the Hermitian and anti-Hermitian
parts of 67(¢y +). Then, since these parts are capable

of independent variation, it follows that

as well as the adjoint of this equation.!¢ It then follows
from Eq. (2.2) that

+)rlly +) (2.11)

A, {lo +)/Trplty) =0, (2.12)
a not unexpected result. By postmultiplying Eq. (2.11) by
71(¢o+) and adding the resulting equation to its adjoint
and making use of Eq. (2. 1), we obtain
J

h % (o +) = [Ho +), pllg +)], (2.13)
which is the equation we seek. It is a necessary con-
dition for Eq. (2.12) to hold, but is not sufficient,17?

In order to render the preceding results in somewhat
more familiar terms, we restrict p(¢) initially to be
a projection of trace unily. For that purpose, we express
7(f) in representative form as

() = [9(1)) (e, (2.14)
with

(plpy = (Wltg) 1W(tg)) = 1. (2.15)
As a consequence of Eq. (2.1),

p(t) = () (w(0)| (2.16)
and

pAL) = (¥(0) (1)) p(0). (2.17)
By Eq. (2.15), p(/9) has the desired initial behavior.

In these terms, Eq. (2.2) is transcribable as

a0 E<(H(l) —ih %) (t) l (H(t) —ih ) \l/(t)> (2.18)

and the transcription of Eqgs. (2. 3) and (2.4) is
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5[ay (ty +)/C¥{t) 19 (tg))] = 0, (2.19)
subject to the constraints
6%(t,)) = (6¥(t,)| = 0; (2.20)

Eq. (2. 5) is unaltered. By taking advantage of the gen-
erality of the analysis leading from Eq. (2.6} to Eq.
(2.10), we readily conclude that Eqgs. (2.19) and (2. 20)

require that
h 5 )‘W )>] = 0.

Upon expressing Eq. (2.21) in terms of the real and
imaginary parts of [6¥(/, +)), and allowing these parts
to vary arbitrarily and independently, we get

(o, +)| (B, +) — (2.21)

i 5= l\lf(t +)) =H{, +) 1w, +)), (2.22)
as well as the complex conjugate of this equation—the
time-dependent equation of Schridinger. As previougly,
[4, (¢, +) ¥(ty) 19{t,))] acquires its minimum possible
value-zero.

The relationship of the present minimum principle
to previous work can now be made evident. Equation
(2.18) is precisely the quantity first introduced by
McLachlan,® and the minimum principle expressed by
Egs. (2.1)-(2.5) is a generalization of his. Equation
(2.21) is similar to the Dirac-Frenkell»2 variational
principle, but it is evidently a weaker one. Its generaliza-
tion is Eq. (2. 10) which, more importantly, follows as
a consequence of the minimum principle. Furthermore,
in contrast to previous ones, the present minimum prin-
ciple makes explicit use of the variational constraints
that prevail at an initial instant of time in order to ob-
tain the behavior of the varied quantity in the immediate
neighborhood of that instant.18

3. IMPOSITION OF ADDITIONAL CONSTRAINTS

Variational principles that are designed to yield
known equations when the appropriate quantities are
permitted to vary freely, apart from natural constraints,
do not furnish thereby any real test of their adequacy.
This behavior is necessary and is ensured in the con-
struction of a variational principle, but it hardly suf-
fices to judge the latter's utility in obtaining approxi-
mate solutions of the equations. For this reason, it is
appropriate that we examine some examples in which
additional constraints are imposed on the varied quanti-
ties, that ensure that they cannot yield exact solutions
of the equations of interest. Thereby, the utility of the
present minimum principle may be made evident.

I plt) =p (l)p (£). In this example, we seek to exploit
the “best” so utlon for the statistical operator when it is
constrainted to be representable as the product of two
others, each one depending on a disjoint subset of the
degrees of freedom of the system of interest.

We introduce

(07, 7(t) = p (1), (3.1)

TLOTT(E) = py1), (3.2)

the subscripts denoting pertinent disjoint degrees of
freedom.

In these terms, we require that
plt) =p (t)p () = [T t)'r l)][ ([)'r nlr. (3.3)
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Furthermore, we assume the Hamiltonian of the system
to be

H{H = Hi() + H () + Hy(4), (3.4)

For the present case,
8,y (0 = Tr [(HO) — in ) ri(Or0)] 7
(50— D) n0n0]. 6.5

The solution of the variational problem expressed by
Egs. (2. 3)-(2. 5), with the foregoing modifications of 7(t),
is immediately obtainable from Eq.(2.10) and found to be

Im {Tr()‘rl’f (g HITf (1, + )[(H(ZO +) —ih ;%) 7L+l +)]}

+Im )]Tré‘r;(lo + )1'17“(10 +)

x[(H(zOH — ik a%o)rz(zoﬂrl(zoﬂ]} =0.  (3.6)
Since the variations &7,((, +) and 87,4(f, +) can be re-
garded as independent and arbitrary, each of the quanti-
ties on the left-hand side of Eq. (3. 6) must vanish. As

a further consequence, involving rendering the variations
in terms of their Hermitian and anti-Hermitian parts,
we obtain

' 871(/0 +)
dlg
— (Hl([() +)+ T_F&Mé_tﬁ)*)) 71(10 +)
Tr, Pz(t() +)
<T1'2H2(/o +)poflo +)

it

Trzp2(/O +)

Trar'(to +)37olly +)/3¢
—h #z 10 el 0> Ty(ty +) (3.7)
Trzpz(l0 +)
and
. 87'2(10 +)
F)lo
Tr 8, o, +)plig +)
— (Hz(/ +) + _1,_12_.(0__£L(L, )7-2([0 +)
° Tryp4(lp +)
N (Trlﬂl(lo +)p1(lo +)
Tr,pq(lg +)
Tr.7.0(t, +)or,(l, +)/0!
—in 10 10 °> 0, +), (3.8)
Trlpl(’o +)

as well as the adjoints of these equations. The various
trace operations are to be carried out only over the
indicated degrees of freedom.

1t now follows from these equations and Eqgs. (3.1) and
(3.2} that

ap, (L, +) TroH, ,(t, +)pylty +)
il il *) [Hl(lO R N +)J
2o Try p,(to +)
(3.9)
and
Apofly t+) TriHo(ly +)pqligt)
it LzéTO(;_‘: [H2(50+)+ —lflg—p%ﬁ—)l—i Loty +)
T
1o (3.10)

Evidently, p, and p, each have equations of motion of the
von Neumann type. Each is coupled to the other by an

16Q J. Math, Phys., Vol. 16, No. 1, January 1975

appropriate average of the interaction Hamiltonian
between the two disjoint sets of degrees of freedom,
involving the complementary statistical operator. Further-
more, it is to be noted that these equations are idenfical
to the exact equations of motion for the reduced statis-
tical opervators of a system when the total statistical
operator is representable as the product of two dis-

joint factors.® It is evident that Eqs. (3.9) and (3.10)
maintain constaney of the traces of the p's, in the
immediate vicinity of the initial instant of time.

From either of Egs. (3.7) or (3.8) it is verified that
ih (Trff(‘o H)aTylly +)/3tg oy H) oyl +)/azo>
Trypylo +) Trp,(ly +)
_ TrypH(, +)py(ly +lpaltg +)
= Tr12p1(10+)p2(40 +) .

(3.11)

As a consequence, Egs. (3.7) and (3. 8) lead to

.0
zh—at—o [ﬂ“o +)72([0 +)J

=80, +) — 8,0 ] [7 g D ] Ga2)

where ) )
Tr,H,, (¢ t
AH,5(0) = H,, (1) — (T&M”_Pl_(‘) L TraHip (0o
Tr p (¢) Tr, p,(2)
B Tr12H12(l)Pl(1)Pz(l)> 3.13)
Tr 50, (Npo{0)

From this and Eq. (3. 5) we obtain
(281510 +)/Tri0,(Lg)pa(lg)]

=Try[AH (g )20, (la+)pall+)/Tr 40, (Lo)ps (ty).
(3.14)
Finally, when H is independent of time Eg. (3.12) can be
exploited to establish that the energy of the system is
conserved, as it should be.20 In the interest of brevity,
we omit the details.

M
(an |e()) = 35 ¢, (0l¢,,). When the |p)'s form a

complete orth(')nnc}rmal set of time-independent functions,
this case reduces to the usual one involving Dirac's
method of variation of constants.?! For the present,
however, we will only assume that the |¢)'s are linearly
independent, normalized to unity and finite in number .22
In that case,

M M
2,0 = 2 $3HCL 06,0 (o, B o,

+ IR[CE(OC (1) — CHOC, (O e, HO |@,)

m m

+12CEC, (D4, 1o, ) (3.15)

The variational problem expressed by Egs. (2.19) and
(2.20) is transcribable in the present terms, as is its
solution, Eqg. (2.21).

The result is that we must have

M

M
Im ¥ 8¢, +)( 30, +) o Hitg Hle,)
rn=1

m=1
M .
R +><¢m\¢,,>> ~0. (3.16)
n=1
Regarding the real and imaginary parts of the several
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6C,(ly +) as capable of independent and arbitrary varia-
tion, we obtain

M
7h % cn<10 +) <(vom !(pr) = Zlcn(!o +)<(pm!H(lO +) I(Pn>’
n=1 n=

(3.17)

It is readily determined from these equations that normal-
ization of |®(¢)) remains constant in the immediate
vicinity of the initial instant of time. When the |¢)'s
form a complete orthonormal set of time-independent
functions, Eqs. (3.17) become the usual ones for an

exact solution of Schridinger's time-dependent equa-
tions.2?

We now introduce a complete orthonormal basis {|¥)]
such that
(@) =8

all j and & (3.18)

and

(Wlo,) =0, k>M,1<m<M. (3.19)
The last relationship entails no loss of generality since
the lg)'s are linearly independent, by hypothesis. Then,

Egs. {3.17) can be written as

M ~
El(‘”m"l’k> <z’h 'a_;g (Wlofr, +)) — (¥, H{ +) 1l +)>>

=0, 1lsm<M. (3.20)
Since these equations comprise a set of 4/ homogeneous
equations that determine the coefficients of the
(@,,N,)'s and since the determinant of the (¢, [¥,)'s,

1 < m, %k s M, must necessarily differ from zero, we

are able to conclude that

h —Id’(/o +))

(7 25 1w [H( +)!\yk><wkl>|q>(z +). (3.21)

iT1l k=1

As a result, we obtain that
[Auto+) /(@) 1@ (L))]
= 20 KU, IH(to D)ot +) 12/@ (1) | (2,)) (3.22)

i>M

Finally, when H is independent of time Eq. (3. 21) can be
used to establish that the energy of the system is con-
served, but we omit the details.

4, PHYSICAL INTERPRETATION OF THE
MINIMUM PRINCIPLE

The formal nature of the preceding analysis can be
mitigated somewhat by expressing the quantity being
minimized in terms that ascribe a physical significance
to it. This is especially desirable because of the criti-
cism that has been given of the wavefunction formulation
of the minimum principle, on physical grounds.2

In order to do so, we first suppose that we are given
a 1,({}. With no undue loss of generality, and guided by
the form of Eq. (3.12), we further suppose that there
exists an effective time-dependent Hamiltonian H {{)

(which may not necessarily be Hermitian, however) such
that

aTQ(l)

EY] [TO(/)]_:l

In such a case, making use of Eq.(2.1), we obtain from
Eq.(2.2)

Hyl) = /h

(4.1)
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A, (0 = Trp ([HE ~ Ho () ]THE) — Ho (D], (4.2)
From this expression it becomes apparent that the
minimum principle we have described seeks to mini-
mize the disparity between the actual Hamillonian of the
system of intevesi and an effective Hamillonian which
can be attributed to a time-dependent statistical operator
selected to describe the system. The quantity mini-
mized is the mean-squaved-deviation of the effective
Hamillonian from the actual one—a perfectly meaningful
physical property.

To reinforce this physical interpretation, we render
it in more familiar terms by dealing with the wave-
function version. Supposing that we are given a |¥,(1)),
and guided this time by the form of Eq. (3.21), we further
suppose that there exists an effective time-dependent
Hamiltonian®

Hy () = ih Ni( (Iegt))t (4.3)
As a consequence, Eq. (2. 18) yields
Ay (D = @D IEO = H@O)EO D) W 0),  (4.4)

which is the wavefunction transcription of Eq. (4. 2).

An alternative rendition is possible in wavefunction
terms that exposes more clearly the physical signifi-
cance of the quantity being minimized. When the Hamil-
tonian of the system is independent of time we may
choose

No(1)) = e itEAY ), (4.5)
which, apart from the given form, is arbitrary. Then
Eqgs. (4. 3) and (4.4) immediately yield

By = WolH-Eg) . (4.6)
When, apart from the normalization constraint, ;) and
E are capable of arbitrary variation, the minimization
of A, is one of minimizing the vaviance in enevgy as-
soc1ated with [¥4(f)}. Finding a vanishing value for it

then amounts to finding an eigenvalue and eigenfunction
for H.26

There remains one final matter to be considered,
having to do with the temporal domain of the solutions
of the variational equations that obtain from the mini-
mum principle. Having imposed appropriate initial
constraints at /,, we have no assurance that these con-
straints allow the quantities that are involved to have
time derivatives that exist at that instant of time.?” For
this reason, the entire variational analysis of the pre-
ceding sections has been expressed in terms of the
immediate vicinity of that instant, {, +. The results
which have been obtained as a consequence are unaltered
if the physical situation is such as to require continuity
of the various quantities and their time derivatives at
¢

o

The requirement of continuity does, however, imply
certain restrictions on the initial values that can be
chosen for the quantities that are involved. For example,
suppose that we require that

Tollo +) = 7o(ly) (4.7)
and
87'0([0 +) _ dTO(lo) (4 8)
3ty | dly ’
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where T, is a solution of the varitional problem expres-
sed by Eq. (2.10), suitably augmented by appropriate
constraints on its form. Then, by Eq. (4.1), we must
have2®

Im{ Tr o7yl (t,) [H(ty) — Hft )l ft o)t = 0.

Since this equation is to hold for arbitrary 67{/4) it must
hold as well if we take

(4.9)

67{ly) = aty(ty) or bry(ty) =ipr i) (4.10)

where o and g are arbitrary, small real numbers. But
then it follows that we must have

Trpglip)[H(l o) —Hg(ig)] = 0.

In this case, therefore, continuity of ( 1) at ¢ o requires
that it be chosen S0 that the effective Hmmltoman as-
sociated with il initially yields the same enevgy as the
actual Hamilionian of the system.

(4.11)

The consequence of requiring continuity of &7,(()/8!
at [, involves the minimum value of A ( o). To see this,
we represent [analogous to Egs. (2. 6) and (2. 7]

- i (
UAH;Y:——) = glini 4 foma’x e-tx —'ia—f?——l (4.12)
By carrying out an integration by parts, we obtain
0A},0(30+) C i
—n, cﬂnootf dx e tx (A, (g + 20— 4, (4,)]
= ;l}»in ¢, (fO; 0 — A O(IO)]. (4.13)

Since

a,dto+) = lim D (lo; ),

L+ o0
a necessary condition that |3 Apo(lo
is that

+)/0ty] exists, i.e.,

o1,(t)/ 8t is continuous at ¢/,

A,)o(fo +) = A,,O(fo), (4.14)
which was to be expected. However, since 8,, (ty) depends
only on the initial values of the quant1t1es involved and
since A (to +) is its minimum value in the immediate
v1c1n1ty of Lo, continuity of Ap (1) at ¢, then requires

1!y to be chosen so that the’mean-squared-deviation of
the effeclive Hamiltonian associated with il from the
actual Hamiltonian of the system is initially a minimum,

viz.,

{(4.15)

Although both Eqs. (4.11) and (4.15) represent con-
straints on the initial value of T/}, it may not always
be possible to satisfy them. For some situations it
may not even be desirable to do so. However, since the
variational fomulation we have described ensures that
they are satisfied at ¢ +, the solutions that have been
obtained can be extended to later times with full as-
surance that any discontinuous behavior they exhibit
will be related entirely to the intrinsic discontinuities
in their Hamiltonians. By invoking Eqs. (4.11) and
(4.15), the extension to times prior to {; can be carried
out with the same assurance.
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It is shown that any distributive Segal quantum system satisfying a certain continuity condition on
the squaring operation can be represented as a space of Mackey observables based on some logic

derived from the original system.

INTRODUCTION

The axiomatic systems initiated by Segal (Refs. 1, 2)
and Mackey (Ref. 3) have been the object of study of
several mathematicians and physicists (Refs. 4 to 15
to mention only a few). In the hope of understanding the
nature of these systems, the present writer has present-
ed (Ref. 16) an axiomatic system containing both as
special cases. In the present paper a study is made for
the same purpose, but along different lines. It essential-
ly amounts to showing that certain Segal systems 9 are
contained as subsystems of Mackey systems, in the
sense that the elements of ¥ are actually o-homomor-
phisms from the Borel sets of the line into some
o-logic £ of events; it is also shown that the states of %
are obtained from probability measures on £.

The argument we present requires two conditions to
be imposed upon A . The first is that the operation of
squaring an observable, A —> AZ the basic building block
of the Segal system, is continuous in the strong bounded
topology (see Sec.IIA). The second is that the pseudo-
product A-B, defined via squaring as i[(A + B)2 —

(A — B)?2], is distributive over +. It is not difficult to
show that both conditions hold for nontrivial cases, e.g.,
for the system of self-adjoint elements in an abstract
C*-algebra (see appendix B).

The proof consists in enlarging the system (without
loosing any structure in the process) so that it will
become strongly complete. In this it extends results
obtained for various special cases (Refs. 17, 18, 19). As
a result the enlarged system contains sufficiently many
idempotents, which form a complete logic £. Finally
the bounded Mackey observables associated with this
logic are shown to be in a one-to~one correspondence
with the elements of the enlarged system.

The paper consists of four parts. In Sec.I we present

a different axiomatic description of Segal systems in
order to make the enlargement process mentioned above
more natural. In Sec.II the enlargement is constructed,
and in Sec. III we establish the main result. Some
examples and comments make up Sec.IV.

I. ALTERNATIVE DESCRIPTION OF SEGAL SYSTEMS
A. The original Segal system
A single undefined term “observable” forms the back-

ground, and we assume the following:

Axiom S1: The set % of all observables is a vector space
over the reals.

Axiom S2: A map A — A2 is defined from % to ¥ such
that if we set A B = §[(A4 + B)2 — (A — B)2] and define
inductively A#*1 = A%+ A, then:

(i) there exists an / € ¥ such that A-/ = A for all
Ac¥.

(ii) Letting p(x) = 2y -0 bpx* be any real polynomial
and p(A) = 24  pA* (A° = ) we have p(q(A)) =
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(poq)(A) where o denotes composition of functions.

Axiom S3: The space ¥ carries a norm A — |l All such
that:

(1) Azl =lAlz,
(ii) 1A2 — B2|| = max [| All 2, || BI| 2],

(iii) A = A2 is continuous,
(iv) The space is complete.

A state is defined as a linear map m: %N — reals such
that m(7/) = 1 and m(A2Z) = 0 for all A = ¥,

The proofs of all theorems that we shall state below
can be found in Refs. 1, 2, and 4.

The following “spectral representation theorem”
forms the basis of the whole Segal theory.

Theovem 1: For every A < W there exists a unique com-
pact set 0A in the real line such that the smallest vec-
tor subspace F(A) of ¥ containing [ and A, closed under
squaring and in the norm topology is isomorphic to the
algebra of all continuous real functions defined on ¢A.
This isomorphism preserves the vector operations,
squaring (hence the pseudoproduct ‘), maps A to the
identity function on 04, and transforms the norm to

the functional supremum norm.

The proof involves the use of the Gelfand theorem
on representations of commutative C*-algebras; in
establishing that the correct conditions hold for F(A),
part (iii) of S3 is essential. The existence of ¢A comes
from the fact that F(A) is an algebra with a single
generator A and part (ii) of §3, while uniqueness follows
from the requirement that A maps to the identity func-
tion on cA.

The spectvum of A is then defined as this set oA, and
for any continuous function f on the line the observable
JA is defined to be that element of 3(A) which maps to
f restricted to ol. For a polynomial p the notation is
consistent.

Theovem 2: For every a € oA there exists a state m
such that m(A) = a.

The proof consists of an application of a Hahn—Banach
type theorem. Of considerable importance in setting up
the hypotheses of this theorem is a result of Sherman
(Ref. 4) to the effect that any sum of squares in ¥ is
necessarily a square.

Although it is not really crucial for our main theorem
it is of interest to note that for Segal systems in which
the pseudoproduct * is distributive, the analytical con-
ditions S3 (iii) can be formulated in a completely
algebraic way.

Rewmavk 1: The operation * is distributive iff for
any A, 3,we have (A + B)2 + (A — B)2 = 2A2 + 2B2,

Necessity is obvious if we take into account that
(—A)* B = —(A" B). Sufficiency follows by using the
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condition to obtain (A; + A,) 8 + (4, —A,) B =
2(A - B)(direct calculation), hence (24) B = 2(A* B)
(since by definition O- B = 0 anyway), and finally re-
placing A}, A, by 5(A; + A,), 3(A, — A,).

Remark 2: I + is distributive and squaring is
norm continuous, then for any A, B and real « we have
(aA)- B = af{A- B). The converse also holds.

To see this note that distributivity implies (aA)' B =
a(A- B) for any rational a. If squaring is continuous,
then so is the map « — (¢A)* B and the conclusion holds
for all real a. Now assume (ad)'B = a(A* B) for all a,
which is equivalent to a(A + B)2 + (aA — B)2 =
(a\ + B)2 + a(A — B)2. This we can write as 2C2 +
202 = (C + D)2 + (C — D)2 if we set Ya (A + B) = V2C,
uA — B = V2D provided that we alsoc have ad + B =
C—Da(A—B)=C+ D thls last requirement means
V(z/Z*(z+r/2— 1—+Va)/2, a2 = (Va — a)/2,1/V2 =
(1 + va /2, which boils down to @ = (V2 — 1)2. Thus
given any C,D, we set a = (V2 —1)2, A = [V2/(1 + a)]
[(1/Va)C + D], B = (1/v2)[VaC — D] and apply the
above calculation to obtain 2C2 + 2D2 = (C + D)2 +
(C — D)2,i.e., distributively of + . Continuity of squar-
ing is obtained as follows. We first show that
I A-Bll = 1Al I BIi ; by 83 (ii) we have that | A- B[l =
max [ A + B2, | A — Bl 2], so that it is = 1 in case
both tAll, | Bl are = 1. But then | (171 AlHA)

((1/11 B1)B)Il = 1 and using our hypothesis we can pull
out the scalar factors to obtain the result stated above.
Now we have || (A + B)2 — A2]| = (24 + B)- Bl =

24 + Bl || Bl which goes to zero as || Bl goes to zero.

Remark 3: The condition (aA)' B = a(A* 8) implies
that for any state m we have [m(A- B)]2 = m(A2)m(B?).

All we need to do is observe that the map (a, b)
m[(eA + bB)2] will be bilinear positive; hence for all
a, b we have a2m(A2) + 2abm(A- B) + b2m(B2) = 0.

B. The new system

This we develop in the spirit of Ref. 16, the results
of which we shall use without reproducing the proofs.
We shall have, as before, a single undefined term
“observable” and one undefined operation carrying the
pair (f, A) to what we shall write as fA or f(A), where
/is an arbitrary continuous real function and A, fA
observables. We write 9 for the set of all observables
¥ for the set of all continuous real functions.

Axiom 1: If the supports of f1,/5, - -+ and those of
form locally finite systems, / = Z,],l,

L1800
¢, B,then fA = gB, (f1/5)A = (¢,8,)

g=249,and j,A =
(B).

Recall (Ref. 20) that a family of sets S, forms a local-
ly finite system if every point has a neighborhood inter-
secting a finite number only of the S 's. In such a case
the same holds for any compact set. Also, under the
hypotheses of Axiom 1, the functions f, g will be
continuous.

Axiom 2: For any f,g € ¥ and A € M we have
flgA) = (fo2)A, where ° denotes composition of functions.

Axiom 3: If fA = fB for all bounded f € F, then
A = B. If 1 denotes the constant function with range {1},
then 1(A) = 1(B) for all A, B € 9.

Axiom 4: M is a vector space over the reals such

that for any 1y, /,, ,f, € ¥ and real ¢y, a,,...,a, we

have (25 a;/)A = Z/a(fA)
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Remark: Writing O for the constant function with
range {0}, we see that O(A) is the zero element of the
vector space I, which we shall again write as O: we
have fA = (f+ 0)A = fA + O(A).

We shall write F(A) for the set {fAlf < F} where A
is any member of M. By virtue of Axiom 1, F(A)
obtains a product defined by (fA) gA) = (fg)A con-
sistently, and becomes an algebra with unity / defined
by 1(A). It is clear that for any family A, the inter-
section NF(A,)is a subalgebra of each F(4; ) and that the
inherited operations are consistent. Also, if jx) = x
for any x, we have jJA = A for any A; we shall write A”#
instead of j*(A) and note that it is just the nth power
of /A in the algebra F(A).

Of fundamental importance is the spectrum of an
observable, defined as follows:

Definition 1: (i) An open set U on the real line is
A-null iff for every bounded nonnegative f « § vanish-
ing outside U we have fA = 0 (ii) The spectrum of A is
the complement of the union of all open A-null sets.
We write it as 0A.

In Ref. 16 we have established the following:

Theovem 3: Let U, U, be A-null, and V C U; then
Vand U U, are A-null. T1}1us oA is closed

Theorem 4: For any f € F,A = M we have o fA) =
f(0A) (the closure of the set { j(x Yx € gA}); A = 0 iff
oA C {Of

Theorem 5. The map fA — f | oA (the restriction of
Jto cA) is an isomorphism of F(A) onto the set of
functions continuous on ¢A.

Definition 2: The novm or bound || All of A € M
is the number sup {|x| |x ¢ 0A}. An observable A is
bounded if | A < + «. Write ® for the set of all bound-
ed observables.

By Theorem 4 we have that | fAll = sup {|/(x)]
|x € oA} so that in particular | A2|| = || Al 2,

Definition 3: A slate of the system is a map m: B
reals such that m(l) = 1, m(A2) = 0, m(aA) = am(A), and
m(A + B) = m(A) + m(B), whenever A, 8, A + B ¢ ®.

This last precaution is necessary, because ® need
not as yet be closed under sums.

Note that for any state we have |m(A)l = All.

Theovem 6: For every state m and every obser-
vable A there exists a unique (finitely additive) regular
probability measure p, ,, on the ring generated by the
open sets of the line suéh that m(fA) = ff(x)dpA w(X)
for all bounded fA; this measure is supported by oA and
is therefore countably additive in case A is bounded.

For A not bounded it may happen that [xdp, ()
exists, in which case we shall still write it as m(A).

Definition 4: The measure p, ,, is the probability
distvibution of A in the state me.

Axiom 5: For every A ¢ 9 and every open set U
which is not A-null there exists a state m for which

Pa,mU) = 1.
Theovem 7: For every A < I the norm | Al is

the supremum of all numbers Im(A)‘ as m varies
over all states for which mA exists.
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Proof: First we show that whether A is bounded
or not, there exist states m for which mA is finite.
Take x, € 0A (if 0A = ¢,then A = 0!) and any € > 0;
the open interval U = (x, — €,%, + €) is not A-null
since it intersects the spectrum of A, hence there
exists a state m with p, ,,(U) = 1. Since p, ,, is then
concentrated in U and for x € U we have |x[< [xgl + €
the integral xdpA’ (%) is finite. Now suppose that
this x, is nonnegative, so that for x € U we have
x > lxyl— € then {m(A)| = { [ xdp (= xgl— ¢,
so that the supremum of all [m(4)! will be = [x,|. In
case x, < 0 we consider —A to reach the same con-
clusion. Thus for any x, « 0A we have the supremum
of the various |m(A4)] exceeding |x, !, and thus exceed-
ing 1 All . Since anyway it is also _<_in|| , we have
equality.

1t is clear that Axiom 4 has had no bearing on the dis-
cussion. The full Segal system actually emerges only
by connecting the sum tightly to the other concepts.

Axiom 6: The sum of two bounded observables is
bounded.

Theovem 8: The set & of all bounded observables is
a vector space such that (i) i | is a norm and (ii)
A2 — B2 = max [| A} 2,1 8] 2].

Proof: (i) all we need is | A + 8l = | Al + (| 3], since
1 All = 0 implies 0A € {0} or A = 0. But since m(A + B)
is now defined for all states, this is immediate from
theorem 7. (ii) Similarly, | A2 — B2|| = sup | m(A2) —
m(B2)|; for definiteness assume || Al = || Bll so that
m(A2) and m(B2) do not exceed || All 2. But |m(A42) —
m(82)| = max [m(A2), m(B2)] = || A} 2 = max

[halz, sl 2]. QED

Axiom 7: The map A — A2 is continuous in the
norm topology on the space of bounded observables.

We have stated this axiom last as it has not been
essential in developing the basic theory. As already
mentioned, however, it plays an important role in Segal's
original formulation, its most crucial use being made in
establishing the existence of the Segal spectrum. Segal
also assumes the space to be complete; in case it is not,
its completion will satisfy all axioms, and again Axiom
7 [= 83(iii)] is of essence in deriving this.

It is of some importance for the remainder of the
paper to have the following theorem, in particular the
implication Pythagorean => Axiom 5:

Theovem 9: In a system satisfying Axioms 1-4,
Axiom 5 is equivalent to the conclusion of Theorem 7
i.e.,that | Al is the supremum of all 'm(4)|. In a sys-
tem satisfying axioms 1-4 and 6 the following are
equivalent:

(i) For every bounded A and a ¢ oA there exists a
state m for which mA = a.

(ii) For A, bounded, there exists an A with A2 = 27» A2
(Pythagorean property).

(iii) For every bounded A and open U intersecting the
spectrum of A there exists a state m with p, ,(U) = 1.

Proof: For the first part we refer to theorem 8 of
Ref. 16. So now assume (i) and let B = 2,7, A2; since
m(B) =z 0 for all states we have 0B C [0, + =). Consider
the function f for which f{x) = vx for x = 0 and fx)=0
for x < 0; since f2/08 = j|oB we obtain from theorem 4
that B = (/B)?%, and we can set A = fB. Still under hypo-
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thesis (i) consider any bounded A, an open set U inter-
secting A and pick a € (0A) N U. Take a continuous
function f with fla) = 1 and 0 = f = y,. Since A is bound-
ed, i.e., 0A compact, we have f(0A) = o( fA) so that

1 = o fA); but then there exists a state m for which
m(fA) = 1, and thus pa n(0) = [ xy@a,pn = [Fdp g, m =
m{fA) = 1.

Now we shall show that (ii) implies (i). Consider the
set F(A); since axiom 6 is assumed, it forms a sub-
space of ® and our hypothesis is that € N F(A) consists
of all elements fA for which f|6A = 0, where € is the
cone of all sums of squares. Now [/ is a radial point of
@: taking any B € B, B ¢ C we join it to / by the seg-
ment { = (1 — )7 + tB = X({) and observe that for
t< 1 — Bl we have | 7 — X(Hll < 1, 0r ofX(2)) € [0, 2],
i.e.,X(t) a square. Take a point a € ¢A; the functional
fA -+ fla) is well defined on F(A), and by our previous
remark it is positive for the relative order structure
imposed by ¢. Hence it extends to a state m of the
system (Ref. 17) for which we evidently have m(A) = a.

Finally we show that (iii) implies (i). Again take
a € oA, and for each open U containing a choose a state
m, with p , mu(U) = 1. Now the space of states is evident-
ly weakly closed in the weak topology of the dual of ®
hence compact, and therefore the net U — m, admits
a subnet m, converging to some state m., We shall have
m{A) = a. Take € > 0 and an index j(¢€) such that j > j(¢€)
implies |m(A) — m (A)| < /2. Note that for any U we
have [m (A4) — al fess than the measure of U, so by
choosing a U, of measure < ¢/2 and a U € U, which is
also beyond j(€) (possible since {j} is a subnet of {U})
we get im(A) — al < €.

C. Relations between the two systems

We are now in a position to compare the two sys-
tems. Suppose that we are given a Segal systemd. Then,
via the spectral representation Theorem 1 we can define
amap (f, A)~ fAfrom § X% to%. The proof that Axiom 1
holds can be found in Ref. 16, while Axiom 2 is satis-
fied by virtue of the representation theorem itself. For
Axiom 3, we see that by letting f agree with the identity
function on the union of the Segal spectra of A and B we
get A = B;the rest of 2 and also 4 are straightforward.

Before proceeding further we note that the Segal
spectrum and the one introduced in Definition 1 are
identical because of Theorem 5. Hence the Segal norm
is the same as that of definition 2. Evidently the states
are also the same.

Axiom 5 holds by virtue of Theorems 2 and 9, and, of
course Axioms 6 and 7 need no comment.

The converse is even easier to verify in view of
Theorems 5, 7, and 8.

Il. COMPLETION OF A SEGAL SYSTEM
A. Construction of the completion

Consider any distributive Segal system, all of whose
elements are bounded.

Definition 5: A net (A;) in % converges weakly to
A € ¥ iff for each state m of W we have m(A, — A) -» 0.
A net (A)) converges strongly to A U iff m{(A, — A)?]
— 0. We abbreviate these statements to w-1lim A, = A,
s-lim A; = A. In case the norms | A || are bounded (for
sufficiently large j) we shall prefix the adjective
“bounded” and abbreviate to bw-lim 4; = A and
bs-lim 4, = A.
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Note that since the system is distributive we have
[mA|2 = m(AZ2) so that strong convergence implies
weak convergence.

Definition 6: A net (A;) is bounded weakly Cauchy
(bw-Cauchy) iff for each st]ate m of we have m(A, — A})
— 0 while the norms || A,!l are bounded for largej. A
net is bounded strongly Cauchy iff for each state m of A
we have m[(A; — A,)?] - 0 and the norms [ A,| are
bounded for large ;

Since for distributive systems we have A — m(A2)1/2
a seminorm, it follows that a (bounded) strongly con-
vergent net is (bounded) strongly Cauchy. The converse
will not be true in general. The purpose of this section
is to enlarge the given system so that it will become
“almost complete” (see Theorem 12). This will allow
any locally bounded Borel function to operate on the
observables of the new system so that axioms 2, 3, 4
and a weak but sufficient version of Axiom 1 hold.

To this end we introduce the following relation: Two
bounded nets (4,), (B]) are equivalent iff for each state
m of % we have m[ A;— B,)2] = 0. We write this as (4))

~(8)).

The following two lemmas are easily verified:

Lemwma 1: The relation ~ is an equivalence.

Lemma 2: 1If (A;) ~ (B,) and (C )
(A; + Cp) ~ (8, +D)and(aA)~(aBj)

Note that (4, + C,) for example is indexed by the
Cartesian product of the two index sets equipped with
the product order (see Appendix A)

~ (D)) then

We shall denote by 9l the set of all equivalence clas-
ses of bs-Cauchy nets in A . This makes sense only if:
{A,) ~(B;) and (A, ;) bs-Cauchy implies (8,) also bs-
Cauchy To verify this, we calculate (B, — B )2 —

(A, — A,)2 = (B2 — A2) + (B? — A3) + 2A,- A, — 2B, B;;
since lm(BZ—AZ)lz = m[(B — A3)2] m[(B, Yaye]=’
Km[(B, — A 2] = 0 (recall tHat |IA I, Il B I'are bounded)
and s1m1larly m(B3 — Ag) > 0 we calculate A-A,
Bi'By=A; (A, — B) + (A, — B;)' Bj; but agam as above
weobtamm[A (A, »B)]—?Oandm[(A B))- B,]~0.
Thus m{(B, — B)z (A; — A))?] tends to zero and as
(4, is Cauchy we obtain m[(B, — B, )2] = 0.

It is now clear how to impose the structure of a vec-
tor space ondl :forX,Y € 9[ pick representative nets
(A}), (B)); then X + Y is the class of (A; + B;) and aX the
class ol (aA))

Now we need to define the element X, for X % and
/ a continuous function. We have to show that (4;) ~ (B;)
implies (fA;) ~ (fB,) and define fX as the class of (/A ).
Also, of course, we must have (fA,) bs-Cauchy to begin
with. To achieve this we shall make use of the following
axiom, which we shall assume from now on.

Axiom 7% Suppose that bs-lim 4; = 0 and (B,) is
bounded; then bs-1im [(A; + B;)Z — Bz] 0.

Lemma 3: Axiom T* is equivalent to: if (4,) is bs-
Cauchy then so is (A2).

Lemma 4: Suppose that (4,) and (B,) are equivalent
bs-Cauchy nets. If f is contmuous then (fA,) and {/B;)
are also equivalent bs-Cauchy nets.

Proof: First note that if we show (f4,) ~ (f8;) it
follows that (fA,) is bs-Cauchy, by replacmg (85) with
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(A;) and using the Cauchy condition instead of (4,) ~ (d)
Next we show that it suffices to prove that (43) ~ (B2).
Assume this and observe that now we also have (AZ)
(82) bs-Cauchy; assuming (4 %) ~ (Bf) for k= 1,2,

and using Lemmas 2, 3 and the relafion An'1 = 5

[(An + A)2 — A2r — Az] we obtain at once that (A7*1) ~
(B71). Thus for any polynomial p we have (p(A ) ~
(p(B )). Consider now a continuous function f, a poly—
nomial p and let 6 be the supremum of the set

{1AX) — p(X)|: | X| = M}, where M is chosen to exceed
the bounds of all [| 4,1, | 8,1i. Since the spectra of 4,
and 3, are then in the interval [— M, M] we have

/A, = pAl ana ! fB; — pB, 1| <5, H(f 2)24,ll and
I(r= 528l < 62} afso, if & is the bound of f on

[ M, M), we have HfA i, I /81l < aand | pA,ll, 1 pB;1l <
a+6 Writing fA, —fB asz — PA, + pA, —pB +

— /B, we obtam m[ (IfA ~jB 2] = m[(fA ~pA 2] +

(PR ST A G N
ml(pB, — f832] + 2 m(fA — pB))|lm(pB; — /B ).
Takmg the previous 1nequa11t1es mto consuieratlon as
well as the relation |m(C-D)|12 = m(C2)m(D?), we
obtain m[(fA, — fB ) ] = 462 + m[(pA, — pB))?] + 420
{2a + Vm[(pA, — pB )2]}. Given the function f and € > 0,
we choose a 6 > 0 so that 6 < €/3 and 462 + 26 [2a +
(e/31/2)] < 2¢/3. Then we choose a polynomial p within
5 from f on the interval [— M, M]. Finally, taking any
state m of %, we choose i, j so large as to have

m[(pA, —pB P21 <e€/3; for the same i, j we shall then
have m[(fA L B2 ] <¢. Sowe fmally turn to the
relation (Az) ~ (éz) We shall establish this using
Lemma 3 and the process of “mixing” the two nets

(A, (B ;') Let /, J be the index set of these two nets
and define K as {(;, igs Jo) 11 = igh U AU, iy Jo) 17 = Jols
also define (i, i, ]1) (4, £5, j5) to mean i; = i, and
Jj1 = j, no matter what the first elements of the triples
are. Clearly K is a directed set. Now define C, to be
A i R = (i, iy, Jy) or B, it k = (j,d, Jo) to obtam the
“m1xed” net, which is of course bounded. Consider two
indices k, k' & K; since k = (i, iy, jy) or (J, iy, Jo), and
k=i, z’o’,j(’)) or (j', ip, Jp) the difference C, — C,. will
have one of the four forms A, — A, ,B,— A, ,A — B,
B, — B] Take any n = (, zl, in and note that since
iz iyt = lo,j = ]0,] = ]O,the condition &, 2" = n
implies #,¢' = i, and j, j' = j;. Since (4,) and (B]) are
equ1valent bs- Cauchy we see at once that (C,) is'also
bs-Cauchy, and by Lemma 3 we obtain (C%) bs-Cauchy.
Now, given € > 0, take n=1{_,ij sothat b, 2" =n
implies m[(C3 — )2] < gifi' =4, j = jset
R={(i'i,jand k' = ( i, j) so that &, k' = n while

C, = Al and C,, Thus we have m[(A2% — 32)2]

. (ad) ~ sh).

As described previously we can now define fA
as the class of any net (fA;} such that (A,) determines
X. We shall show that % thus becomes a Segal system.

Theorem 10: The map (f, X) — fX satisfies axioms
1 through 7, and % becomes a distributive Segal system.
Furthermore the natural imbedding of ¥ into § com-
mutes with the action of each f, so that 3 is actually an
enlargement of % .

Proof: We start with axiom 2: given X « 9 and
continuous f, g take any net (4,) which determines X;
then (gA,) determines gX, so that f{ gX) is the class of
(f(gA))) which the same as that of ((fog)A)), i.e., (fog)X.
For Axiom 3, suppose that fX = 7Y for all f, and pick
(4)), (B, ) determining X, Y. There exists a constant M
exceedmg the bounds of all A,, B, and we choose for f a
function equal to the identity on [— M, M]. Then fA; = A,
/B; = B; and since fX is the class of (fA;) and fY the
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class of fB we have X = fX,Y = fY,or X = Y. The
second part of 3 is obvious. For Axiom 4 we only need
invoke Lemma 2. Now for Axiom 1: Suppose that
f= 2?:1 f, with the supports of the f, forming a locally
finite system,X c % and (A,) a net in the class X. If
M exceeds the bounds of all the A, we choose an N such
that for n» > N each f, vanishes on [— M, M]. Thus on
[— M, M] we have f= 2 %_, f, provided K > N and also
A, =258, f,A,f,A; = 0for n > N. Therefore
fX =2 K f,X for any X > N. If we also have
g = 2;0:1 g, with the supports of the g, forming a local-
ly finite system, and f,X = ¢,Y for all n, we obtain a
similar relation gY = 2, %, £,Y for sufficiently large
K, and thus fX = gY Finally, letting #(X) = X2 we see
that (flfz)‘)":%[ +f )2_)‘2 f%]: % [ho(fl +f2)
—hof X — hc)sz]TL fho(f1 + )X —n(f X)—h
(sz)] and since f,X = g,Y we can retrace our steps to
end up with (g,£,)Y. To verify axiom 5, we need axiom
6 first. Let X be the class of (A,) and M a bound for
I A,l; since fA, = O for f vanishing outside of [— M, M]
we have fX = 0 for those f, hence the spectrum of X is
bounded. Now take any X, Y & 1 ve the classes of (A),
(B].) so that X2 + Y2 is the class of (A% + B]Z.). Choose
a nonnegative C; so that C%, = A2 + BZ; the net (C%))
being bs-Cauchy, we apply to it a continuous function
which agrees with X = VX for X = 0 to obtain (C, 3
itself bs-Cauchy according to lemma 4.

If Z is the class of (Cij) we shall have Z2 = X2 + Y2,
so that by Theorem 9 Axiom 5 is valid.

Distributively of il follows trivially from that of %, as
well as the relation (aX)'Y = a(X-Y).

The last part of the theorem follows from the fact
that if A = bs-lim A, then fA = bs-lim fA; as we can
see immediately using Lemma 4 and the “mixing”
process.

Remark: Given any X € § we can find a net (A )
whose class is again X, for which | Al = | X]| =
Because take any net (B,) for X and con51der the function
fequal to the identity on [— M, M], equal to M on
[M, + ) and to — M on (— o, — M} Then fX = X, and
setting A, = /B, we have the class of A; equal to X while
la,l =M

B. Properties of 8

In this section we shall establish a completeness
theorem for 0[ first we need to show how the states of
W extend to states of .

Let /u be a state of % and X < §; for any net (A)
which determines X we have at once that the numerical
net (1nA)) is Cauchy, since |mA|2 = m(A2), and the
same inequality shows that (A;) ~ (B;) implies lim
m(A;) = im m(B,). We write mX for this number and
observe that by Lemmas 2, 3, 4, the map X = mX will
be linear, #(fX) = lim m( fA;) and in particular
m(X2) = 0,i.e., it is a state of 9.

Lemma 5: I .n(X2) = 0 for all states m of A, then
X = 0.

Proof: Take any bs-Cauchy net (A;) which deter-
mines X, and note that lim m(A?) = 0; this means that
the net (A ;) and the net (0) are equlvalent i.e., X =0.

Theovem 11: Let (X,) be a bounded net in f such
that for every state m of U we have m{(X; — X )2]~ 0.
Then there exists a unique X € 9 such that
m(X — X,)2] = 0.
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Proof: For each i we choose a net (4, ) cJ; in ¥
which determines X, with [ A, Il = 1 X 1. By the pro-
cess in Appendix A, we convert the double net (A, ) toa
single net; thus we have the index set X and for each
% € K a pair of indices i, € [, ]k & Ji; write B, for
Awk We shall show that (B k) is bs- Cauchy and that its
class X satisfies the requirements of the theorem. We
have

m[(B, — B))2] = mA; 2m(A, A

2 -
)+ m(Ain'zz) 3] iziz)'

From the hypothesis that m[(X; — X .)2] = 0 we have

at once that m(X2 — X 2) - 0 since lm(X2 X2)|2 =
4M2m[(X, — X ,)2) where M is a bound for {| X,[| . This

means that lim lim]m(A ) exists, hence that lim}z

m(A;, ;,?) and lim A 2) exist and are equa.l Now
cons1der the iterated 11m1t lim, ; lim, m(A ) by
looking at the squares we see that 11m] 7 )n(A . ZJ) =

mX,;-X,). Since 2X ;- X, = X2 + XZ — (X, % )2 we
have that lim, ;m(X, X, ) = 11m m(XZ). This 1mphes
that the converted s1ng1e limit of m(A;ka A ) will
also be lim;m(X?) = lim ,m(A ;,;, 2). Putting %l these
together we have m[(B, — B,)2] > 0. We now calculate
lim (X, — X)2]. Since (X; — X)?2 is the class of
(A;;— Bk)2 (i fixed) we have m[(X; — X)2] = lim,
n[(A i; — By)?] which equals the iterated limit lim;lim,
m{(A 8,)2]. Thus we consider the triple iterated
limit flm lim, lim, of the same quantity. We convert
the first two to obtain the expression lim, lim,
m[(Am B,)2] = limllimkm[(Aim —A,, ;%] which
exists and is zero. By the second part of the theorem
in Appendix A, we conclude that the triple iterated limit
mentioned above also exists and is zero. Finally we
show uniqueness of X. If we have a Y < 9 such that
m[(X; — Y)2] — 0, then, using the fact that T— vm(T?2)
is a seminorm, we obtain m{(X — ¥)2] = 0 for all
states m of 9, hence by Lemma 5 that X = Y.

It will be notationally convenient to denote the
element X for which m[(X, — X)2] = 0 as lim, X,. Note
that the usual rules hold and that by a polynomial
approximation we also have lim, /X, = fX,

lim, (X, —X) = 0.

C. Action of the Borel functions

Our next goal is to define the action of a locally
bounded Borel function on the arbitrary element X of
A. We shall require the following lemma, which ought
to be well known, but does not seem to appear in the
literature.

Lemma 6: Let f be a bounded Borel function.
There exists a net of continuous functions f;, uniformly
bounded by the bounds of f, which converges to f point-
wise and such that for any countably additive finite
Borel measure i on the line we have f(fi — f)2dup — 0.

Proof: Recall the classification of Borel functions
into classes (Ref. 20): f is of class 0, iff it is continuous:
if @ > 0 is an ordinal, then f is of class « iff if is a
pointwise limit of a sequence of functions of class.
< a, but is not itself of class < . The ordinals needed
to exhaust all Borel functions range up to the first
uncountable. Since the result holds for f of class G,
we assume it holds for any f of class < « and that f
is of class a. Take a sequence of function f of class
< a converging to fpointwise; replacing, if need be, f, by
mid [inf f, f,, sup f] we have that all f, have the same
bounds as f. By the dominated theorem we then have
f(fn — f)2dp. — 0. Now for each n there is a net
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(7, j) e, of continuous functions satisfying the require-

ments of the theorem. They are evidently bounded by
the bounds of f, and lim, lim,/,; = / pointwise. Now
TUy=12= Uy =102+ [ U, =2 =2 [(f, - 1)
(f4y = 1.,); the last term is bounded by 4M [ !/, —fldu
which tends to zero since f, converges boundedly to f.
Thus lim, lim; f (f,z]. — f)2du = 0. All we have to do
now is to convert the double net (/) to a single net by
the process of Appendix A. '

Consider a locally bounded Borel function / and an
element X of . As we shall see, only the values of f
on the spectrum of X will play a role in defining 7 X,
and so we shall take / to be zero outside [ X1, Il XI| ].
Take a net of continuous f; provided for by Lemma 6
and a state m of % . According to Theorem 6, we have
a probability measure p, , at our disposal such that
m(gX) = | gdpy ,,. Thus we have at once that
T =7 )2dpy = 0,1, m[(f X — £,X)2] = 0. But
the norms || fi)yfn” are bounded by the bound of |fI, so
that lim; /, X exists. If we consider any other net of
continuous g, converging to f we have f(j;~gk)2dpx‘m~?0
which shows that m[(lim,f; X — lim,g,X)2] = 0 for all
states m of % ; therefore the element of U obtained is in-
dependent of the choice of the net converging to f and is
completely and uniquely determined by / and X. We
shall write this as fX.

Theorem 12: The map (f,X) = fX defined above
has the following properties:

1) (fog)X = f(gX).
(i) (f+g)X = fX + gX,and if fi;X =g, Y, then (f /)X
= (glgz)y~

(iii) If (f,) is an increasing sequence of functions with
pointwise limit f, then fX = lim £, X.

Proof: Actually only (i) is not obvious from the
definition. So we consider nets f, = f and g; g of con-
tinuous functions, satisfying the requirements of lemma
6; we may take f, zero outside the interval [l gx|,
flgx!]. Since lim,g, X = ¢X, we have for each / that
lim,f(g;X) = f,(gX), so that lim, lim,/,(¢,X) = /(g X).
We also have lim, lim].ji og. = fog, so {hat if we show that
lim, lim, j(/ >&;— f')g)zriu = 0 we can convert the
iterated limit to a single limit to obtain lim,(/, g, )X =
(/°g)X and thus f(gX) = fog)X. We have (f,09, —
1082 = (f,— [)%og + 2(f; 08, — fo9(f; — F)og] +
[/ og; — f,0g]?; take any finite measure p and let v be
the measure E — p{g 'E) so that [hdv = [ (iog)dy; the
first term then, integrated by ¢ will have lim; lim,
equal to 0. The second term when integrated by u will
be bounded by a constant (since all functions are uni-
formly bounded) times f lfi — Jldv which goes to zero
too, since its square is bounded by j (f; — J)2dv. Now
consider the last term and take a polynomial p within
from f, on an interval containing the ranges of all g, g;
this last term will then be =< 262 + 26 (constant bound) +
(‘I)Ogj — pog)2; making § small, choosing p accordingly and
noting that pog; — pog is bounded by a constant times
£; — g we see that for every / we have lim, { (f08;—
f;og)2du = 0, which completes the proof.

t1l. IMBEDDING IN A MACKEY SYSTEM

A. ldempotents in a distributive system

We shall first study in this section the properties of
idempotent elements in a distributive system satisfying
Axioms 1-6 and then apply this knowledge to the com-
pletion of a Segal system.
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First note that the natural order of%(given by the cone
of all squares) is inherited by the set £ of all idem-
potents, andthat O and I are the smallest and largest elements
of £. Also P ¢ £ implies /— P « &£ while the map
P —> P’ = [— Pis an involution for which P = ¢ implies
Q' = P,

Theovem 13: The sum of two idempotents is an
idempotent iff it is = [, iff their product is 0. Also, for
P, ¢ idempotents we have ¢ — P an idempotent iff = @;
thus in particular P < &' iff P-¢ = 0.

])'VOOf.' Let P2 = P,Qz = Q,R =P+ @, 1 =P Q.
By distributivity we have 2(P-¢) = (P + @) — P — ¢
and (P — Q)2 = P+ @ — 2(P ) so that 12 = R+ (2/— 1)
or (/—R)2 = [— T2, Now suppose that R = /, so that
(I— T2)1/2 = [ — R;then we obtain £ = }|R + 1] =
S+ 1 —(—T2)Y2)and Q = 5[k — T = 31~ T —
(I— 72)1/2]. ldempotency of P now yields 1" ([ — T2)1/2
= 0 which means that the spectrum of 7 is contained in
the set {0, —1, 1}; since R = /- (/— 12)1/2 the spectrum
of R is contained in {0, 1} which means that R is an
idempotent.

The converse is clear, since for R idempotent we
have /| — R also,hence /- R = 0,or R = /. Equally
obvious is the condition P-@ = 0.

Now for the second part note that ¢ -- P positive is
implied by idempotency; so suppose ¢ = P so that the
sum of the idempotents / — ¢, P is = /, hence [ @ + P
is an idempotent and € —~ P = [/ — (/- & + [°) is also.

Theorem 14: For any finite set of idempotents 7/
which are pairwise disjoint (either in the sense P; = [
or P+ P, = 0 for i # j) their sum is an idempotent and
is also {heir supremum.

Proof: Let P =}, | P, sothat P - P for all i;
distributivity of course implies that P is an idempotent,
solet B > P, be an idempotent. Then we have that
[/~ R has product zero with each P, hence the sum
[-—-R + P will be an idempotent; this means / — R +
P=TorP=R.

So we have established that the set of all idempotents
forms in a natural way an orthomodular logic.

B. The imbedding theorem

We shall now study the logic of idempotents of the
completion of a distributive Segal system . This
completion A will contain a large supply of idempotents
due to the action of characteristic functions.

Theovem 15: In the set £ of idempotents of ¥, any
family (Pj) of pairwise disjoint idempotents admits a
supremum F; furthermore, for any state m of A we
have m(P) = Z‘,juz(l’j).

Proof: Consider the set K of 211 finite subsets of
he given index set, partially order it by inclusion, and
construct the net k > ¢ ,, where for » =1y, jy. ... 4]
we set @, = 2, Py . Evidently k, = k, implies »(®, ) -

*”sz) = 1, and hence lim ,n(¢,) exists; call it «. Now
(@p, = ¥, )2 = Wy t W, — 2¢, " @, and we see that
Qk]- Wy, = Wy, ny, DY the distributive law; hence, for

kqy, ks = % we also have £, N %, = & and thus

ml(&, - @, )%] converges to @ + ¢ 2¢ = 0. Since

I @,l'= 1,wé have by Theorem 11 an element £« ¥
with 1im,¢, = P. As all ¢, are idempotents, so is P. To
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show that P is the supremum of the P, suppose that for
some idempotent R we have P, =R (a{l 7); then we also
have @, =R for all 2, and R — &, is an idempotent;
hence R — £ = lim, (R — &,) will be an idempotent, which
implies R = P. On the other hand, P — P, = lim,

(@, — Pj); since for k = jwe have ¢, = P, we obtain

P — P an idempotent and thus P = P,. For the last
part note that m(P) = lim (@), m(Q,) = Zrm(Pjr), or
m(P) = Zj m£).

Recall that, given a o-logic £ we define an observable
based on £ as a o-homorphism u« from the Borel sets
of the line to elements of £; a Borel function f acts on
such an observable by composition fu = uof~ 1.

Theovem 16: For X € 9 define uy as £ = yz(X);
then u, is a bounded observable based on £, the map
X i, is 1:1 onto the set of all bounded observables
and commutes with the action of locally bounded Borel
functions; finally for each state /n of ¥ we have m(fX) =
fd‘lx, no Where q, = inou, and is thus the probabil~
ity distribution of X in the state .

Proof: By Theorem 12 and the previous theorem
we see that «, is indeed a v-homomorphism. Now par-
tition the interval J = [—|XIl, 1 X! ] into sufficiently
small subintervals J, so that on J we have lj —Z}kxkak] <

€ for any x, . J, (where i is the identity function). Then
we obtain that | X — 25, x,u,(J)]l < €, which of course
implies that if u, = u,, then !TX — Yl =¢ie,X=Y.
So our map is 1:1. Now to show that this map is onto,
consider any bounded observable « based on £; suppose
that «(£) = 0 for E disjoint from the interval (—a, a).
Take as above step functions 7, converging uniformly

to the identity function j on [~a, al, /, = 20;d,y,,, and
set X, = 25.a,u(d,) € %;note that | X | = «. Since

1Xx, — X, = supils,(x)— f(x)]:x € [~a,a]} > 0, we
have for each state s of ¥ that m[(X, — X,)2] = 0; let
X = lim X, . We shall show that « = «,, and thus estab-
lish that our map is onto. Since both gides are o-homo-
morphisms, it suffices to show u(J) = 1 ,(J) for all open

intervals J C [--«, a]. Consider continuous g, vanishing
outside J, nonnegative and converging increasingly to

. For any finite measure  we have | (g, — x,)2dn—0,
hence 1 {J) = lim, g,(X). On the other hand, we have
g{X) = lim,g(X ) so that w(J) — u (J} = lim, lim,,
() — g, (X )] Now X, = 2,a,4J,,) and by a poly-
nomial approximation we have g, (X,) = ?,.g(a,Ju(d,; " J)
since g, vanishes outside J = U (J,; ri J). So we end up
with the relation [u(J) — u,(J)]? = lim, lim,,
20,01 — gla, )2u(d,, (v J). For any state m of A we there-
fore have mf(u(J) — uy(J))2] = lim, lim, 23,
[1— g, (0,2, " J), where ¢ = mou. The limit over
1 will produce _fJ (1 — g,)2du and since the limit of this
over k is 0 (as above) we obtain from Lemma 5 that
() = u, (J).

To correlate the action of f we calculate: u;y(E) =
XE(]')() = (X[;O]')«Y = X/,.-IE‘X = “x(fﬁlE) = (”XOf{)E-
The relation w(/X) = [/dy, ,, follows at once by an
argument similar to that at the very beginning of the
proof.

IV. EXAMPLES AND CONCLUDING REMARKS
A. Examples

We present the following two examples of “complete”
Segal systems. In the first all hypotheses are satisfied
but the system is far from being close to a C*-algebra,
as it is reflexive as a Banach space. The second is not
distributive, but is still imbeddable in a Mackey system;
thus distributively is not necessary. Perhaps the most
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interesting fact about these systems is that they produce
isomorphic logics, so that in general a Segal system is
not determined by its idempotents.

Fiyst example: Let JCbe a Hilbert space with inner
product {|) and % the set ® X ¥, where & is the reals
with the product vector space structure. We define
(t,x)2 to be (12 + | x] 2, 2tx) and || (£, x)I} to be |¢] + [ xll.
It follows that (£, x)*(s,y) = (is + (x|3), ty + sx) so that
it is distributive with identity I = (1, 0). The states are
in a 1: 1 correspondence with the vectors y of the unit
ball in X, the state determined by y being (¢, x) =

{ + (xly). Thus strong convergence is equivalent to
convergence in the norm, which implies that axiom T* is
satisfied while A is % itself. The idempotents in Y are
easily seen to have the form 0, [ or (3, x) where lx| = ;
also, the only order relations that hold are of the form
0 = P = [ for any idempotent P. Finally, every element
(Lxy= (6= lx0)1,0) + 2l x 11 (5, x/2lxll) for x = 0 or
(1, 0) so that every element is a linear function of some
idempotent.

Second example: Although the construction carries
over to any finite dimension we consider a three-dimen-
sional case. Let % = ®3 and define (x, y, 2)2 to be
(2xz, 2yz,x2 + y2 + 22 + 2[xy]), l(x, v, 2)|l to be [x] +
{y| + |z]. The product is not distributive because of the
presence of the absolute value in the third component of
the square; the identity is (0, 0, 1). Because of the finite
dimension of ¥ Axiom 7* holds here, although, of course,
it is largely irrelevant. The idempotents of the system
have the form 0, [, or (},y,2) with [yl + {zl = 3. Again
the only order relations are the trivial ones, and every
element is a linear function of some idempotent.

In either case the logic £ is the union of four-element
Boolean algebras with common 0 and 7 ; thus if the num-
ber of nontrivial idempotents in the two systems is the
same, the logics will be isomorphic; this can be guaran-
teed by taking the dimension of the Hilbert space in the
first example low enough. Finally note that there are
states of the logic which are not Segal states of the given
system.

B. Remarks

There are several questions that arise in the present
context. Here are some

1. Can the same conclusion be obtained with weak-
er hypotheses ? What exactly is the role of the distribu-
tive law ?

2. What further properties does the derived logic
have ? Is it full ? Is it a lattice ?

3. Is it possible to define a sum for the bounded
observables based on a logic constructed by this
process?

4. What kind of Segal systems can be recaptured
from their idempotents ?
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APPENDIX A: CONVERSION OF ITERATED LIMITS

We collect here for the reader's convenience a few
facts about iterated limits, which we use repeatedly
in our arguments. Most of what follows can be found in
Ref. 21.
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A set [ is directed by a relation =, if = is transitive
and for ', (" € [ there exists an /€ 7 with ', (" =i A
net is a map from a directed set Lto some set §. Let /
be directed by = and, for each i € I, let J; be directed
by some relation which we shall again write as = (no
confusion seems likely). Write J for the cartesian
product X, _;J;, and for f, g € J define f = ¢ to mean
(i) = g(i) for each i € I (“product order” on J);
finally, let K = I X J and impose the produce order on
K, so that it will become directed. For k& € X, we have
k = (i, f); write j, for the first member of the pair and
j, for the element f(i,) of Jik‘

Now let S be a regular Hausdorff topological space,
and s;; € Sfor eachic landjc d.

Theorem: Suppose that lim;s,; = s, exists for each
i € I;them lim,s; exists iff 1imksék , exists, in which

’j
case they are equal.

Proof: The implication from lim, lim s, to
lim,s, . is established in Ref. 21. We shail show the
converse. Let s be the limit of (sik'jk)’ take a neighbor-
hood U of s and by regularity choose a closed neighbor-
hood V of s contained in U. There is a 2, € K such that
if & = kg, then sik,fk € V.Write &= (i, f), kg = (ig, fy) to
obtain i = i, and f(i') = f,(¢’) for all i’ € I. Consider an
i4 = iy, we shall show that 8, € U. Given j = fy(iy)
(j e J“) we construct an /€ J by f(i;) = 7 and fi) = f,(?)
for all other /;thus f = f,, which means that (i;, /) =
(i, f,) SO that Siiy € V. In other words, j = f,(i{) im-
plies s; ; & V and since V is closed we must have
its limit in V, i.e.,s; €V S U. So given U we have an
index ¢/, for which ¢ = i, implies s, € U.

APPENDIX B: CASE OF C* ~ ALGEBRAS

Let % be an abstract C*-algebra. By the representa-
tion theorem of Gelfand it is isomorphic and isometric
to an algebra of operators on a Hilbert space so that
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every state of % has the form 4 — (Aulu) for some unit
vector « (Ref.22). Now let (4;) be a bounded net in %

and suppose that it is bs-Cauchy, i.e., (4, — A)2ulu) — 0
for all vectors u. This means that the net (4 %) is norm-
Cauchy in the Hilbert space; let Au be its limit. Evident-
ly A is a linear transformation and || Aull = lim sup
Al = Mllull since the net (A)) is bounded. By a
theorem of Kaplansky (Ref. 23) we then have A2 — A2 in
the strong operator topology, so that in particular

I (A2 — A2)ull - 0, or m[(AZ — A2)2] > 0. Thus Axiom 7*
holds for the Segal system of self-adjoint elements of a
C*-algebra. The above argument also shows that in

this case the completion of % can be identified with a
system of operators.
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Erratum: Application of infinite order perturbation theory in
linear systems. |1 [J. Math. Phys. 15, 947 (1974)]

Shi-yu Wu

Department of Physics, University of Louisville, Louisville, Kentucky 40208
(Received 13 September 1974)

Equation (6) should read as follows:

1 1
PO=ZeTm - P a7

Erratum: On analytic nonlocal potentials. |. A forward dispersion
relation [J. Math. Phys. 14, 1141 (1973)]

Te Hai Yao

Mathematics Department, Bedford College, Regent’s Park, London NW 1, England
(Received 30 August 1974)

Formula (3.10) should read

}eimf dx’plix; x,x’, cosy, cosé’)=0, (3.10)
-0 03
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